Loading web-font TeX/Math/Italic
A 17.7–20.2-GHz 1024-Element K-Band SATCOM Phased-Array Receiver With 8.1-dB/K G/T, ±70° Beam Scanning, and High Transmit Isolation | IEEE Journals & Magazine | IEEE Xplore

A 17.7–20.2-GHz 1024-Element K-Band SATCOM Phased-Array Receiver With 8.1-dB/K G/T, ±70° Beam Scanning, and High Transmit Isolation


Abstract:

This article presents a wideband scalable 17.7–20.2-GHz 1024-element K -band satellite communication (SATCOM) receive (Rx) phased array with reconfigurable polarizatio...Show More

Abstract:

This article presents a wideband scalable 17.7–20.2-GHz 1024-element K -band satellite communication (SATCOM) receive (Rx) phased array with reconfigurable polarization. The phased array uses silicon Rx beamformer (BF) chips and silicon low-noise amplifiers (LNAs) and is able to receive either linear, rotated linear, circular clockwise, or anticlockwise polarization. It demonstrates a measured 3.47° half-power beamwidth (HPBW), more than 25-dB cross-polar discrimination (XPD), and +8.1-dB/K gain-to-noise (G/T) per polarization, and has more than 80-dB Tx-band isolation. The phased array is able to scan to ±70° in all planes without grating lobes and \cos ^{1-1.2}(\theta) scan loss. The array aperture measures 22.4 cm \times22.4 cm. To our knowledge, this is the largest single printed circuit board (PCB) SATCOM K -band phased-array receiver to date with the highest G/T and represents the highest level of integration at millimeter waves.
Published in: IEEE Transactions on Microwave Theory and Techniques ( Volume: 70, Issue: 3, March 2022)
Page(s): 1769 - 1778
Date of Publication: 02 February 2022

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

There has been an increased interest in global high-speed internet connectivity, especially in low-density areas (poorly served). Traditional Internet service providers (ISPs) could not justify their financial interest in serving those areas, and for users on a plane or ship, satellite communication (SATCOM) Internet is the only solution available. This has led to a new space race by commercial companies to launch their space-based broadband connectivity with SATCOM systems such as Starlink, OneWeb, and Kuiper [1], [3] with hopes of tapping this potentially lucrative market.

Select All
1.
I. del Portillo, B. G. Cameron and E. F. Crawley, "A technical comparison of three low Earth orbit satellite constellation systems to provide global broadband", Acta Astronautica, vol. 159, pp. 123-135, Jun. 2019.
2.
D. Bhattacherjee et al., "Gearing up for the 21st century space race", Proc. 17th ACM Workshop Hot Topics Netw., pp. 113-119, Nov. 2018.
3.
S. C. Burleigh, T. De Cola, S. Morosi, S. Jayousi, E. Cianca and C. Fuchs, "From connectivity to advanced internet services: A comprehensive review of small satellites communications and networks", Wireless Commun. Mobile Comput., vol. 2019, pp. 1-17, May 2019.
4.
L. Paulsen et al., "Fabrication and measurement of a large monolithic PCB-based AESA", Proc. IEEE Int. Symp. Phased Array Syst. Technol. (PAST), pp. 1-7, Oct. 2016.
5.
T. Takahashi et al., "Wide-angle beam steering AESA with three-dimensional stacked PCB for Ka-band in-flight connectivity", Proc. IEEE Int. Symp. Phased Array Syst. Technol. (PAST), pp. 1-5, Oct. 2019.
6.
J. Navarro, "Ultra-small aperture terminals for SATCOM on-the-move applications", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1152-1154, Jun. 2017.
7.
K. K. Wei Low, A. Nafe, S. Zihir, T. Kanar and G. M. Rebeiz, "A scalable circularly-polarized 256-element Ka-band phased-array SATCOM transmitter with ±60° beam scanning and 34.5 dBW EIRP", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1064-1067, Jun. 2019.
8.
K. K. Wei Low, S. Zihir, T. Kanar and G. M. Rebeiz, "A scalable switchable dual-polarized 256-element Ka-band SATCOM transmit phased-array with embedded RF driver and ± 70° beam scanning", IEEE MTT-S Int. Microw. Symp. Dig., pp. 821-824, Aug. 2020.
9.
K. K. W. Low, S. Zihir, T. Kanar and G. M. Rebeiz, "A 27–31 GHz 1024-element Ka-band SATCOM phased-array transmitter with 49.5-dBW peak EIRP 1-dB AR and ±70° beam scanning", IEEE Trans. Microw. Theory Techn., [online] Available: .
10.
K. K. W. Low, G. M. Rebeiz, S. Zihir and T. Kanar, "A reconfigurable dual-polarized 1024-element Ka-band SATCOM transmit phased-array with large scan volume and +48 dBW EIRP", IEEE MTT-S Int. Microw. Symp. Dig., pp. 638-640, Jun. 2021.
11.
W. M. Abdel-Wahab et al., "A modular architecture for wide scan angle phased array antenna for K/Ka mobile SATCOM", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1076-1079, Jun. 2019.
12.
X. Luo et al., "A scalable Ka-band 1024-element transmit dual-circularly-polarized planar phased array for SATCOM application", IEEE Access, vol. 8, pp. 156084-156095, 2020.
13.
X. Luo, J. Ouyang, Z. Chen, L. Han and W. Yan, "A low-profile 36-element K-band active phased array for ultra-small aperture application", IEEE Access, vol. 8, pp. 62286-62297, 2020.
14.
W. Theunissen, V. Jain and G. Menon, "Development of a receive phased array antenna for high altitude platform stations using integrated beamformer modules", IEEE MTT-S Int. Microw. Symp. Dig., pp. 779-782, Jun. 2018.
15.
N. Ghaffarian et al., "Characterization and calibration challenges of an K-band large-scale active phased-array antenna with a modular architecture", Proc. 50th Eur. Microw. Conf. (EuMC), pp. 1039-1042, Jan. 2021.
16.
G. Gultepe, T. Kanar, S. Zihir and G. M. Rebeiz, "A 1024-element Ku-band SATCOM phased-array transmitter with 45-dBW single-polarization EIRP", IEEE Trans. Microw. Theory Techn., vol. 69, no. 9, pp. 4157-4168, Sep. 2021.
17.
G. Gultepe, T. Kanar, S. Zihir and G. M. Rebeiz, "A 1024-element Ku-band SATCOM dual-polarized receiver with >10-dB/K G/T and embedded transmit rejection filter", IEEE Trans. Microw. Theory Techn., vol. 69, no. 7, pp. 3484-3495, Jul. 2021.
18.
G. Gultepe and G. M. Rebeiz, "A 256-element dual-beam polarization-agile SATCOM Ku-band phased-array with 5-dB/K G/T", IEEE Trans. Microw. Theory Techn., vol. 69, no. 11, pp. 4986-4994, Nov. 2021.
19.
A. H. Aljuhani, T. Kanar, S. Zihir and G. M. Rebeiz, "A 256-element Ku-band polarization agile SATCOM receive phased array with wide-angle scanning and high polarization purity", IEEE Trans. Microw. Theory Techn., vol. 69, no. 5, pp. 2609-2628, May 2021.
20.
D. M. Pozar, "Microstrip antennas", Proc. IEEE, vol. 80, no. 1, pp. 79-91, Jan. 1992.
21.
K. Carver and J. Mink, "Microstrip antenna technology", IEEE Trans. Antennas Propag., vol. AP-29, no. 1, pp. 2-24, Jan. 1981.
22.
A. Ishimaru and H.-S. Tuan, "Theory of frequency scanning of antennas", IRE Trans. Antennas Propag., vol. 10, no. 2, pp. 144-150, Mar. 1962.
23.
D. Pozar and D. Schaubert, "Scan blindness in infinite phased arrays of printed dipoles", IEEE Trans. Antennas Propag., vol. AP-32, no. 6, pp. 602-610, Jun. 1984.
24.
A. Nafe, M. Sayginer, K. Kibaroglu and G. M. Rebeiz, "\$2times64\$ -element dual-polarized dual-beam single-aperture 28-GHz phased array with \$2times30\$ Gb/s links for 5G polarization MIMO ", IEEE Trans. Microw. Theory Techn., vol. 68, no. 9, pp. 3872-3884, Sep. 2020.
25.
W. Flock and E. Smith, "Natural radio noise—A mini-review", IEEE Trans. Antennas Propag., vol. AP-32, no. 7, pp. 762-767, Jul. 1984.
26.
T. Phelps, Z. Zhang and G. Rebeiz, "Simultaneous channel phased-array calibration using orthogonal codes and post-coding", IEEE MTT-S Int. Microw. Symp. Dig., pp. 397-399, 2021, [online] Available: https://ieeexplore.ieee.org/document/9575031.
27.
S. K. Garakoui, E. A. M. Klumperink, B. Nauta and F. E. van Vliet, "Phased-array antenna beam squinting related to frequency dependency of delay circuits", Proc. 41st Eur. Microw. Conf., pp. 1304-1307, 2011.
28.
Z. Zhang, Y. Yin and G. M. Rebeiz, "Intersymbol interference and equalization for large 5G phased arrays with wide scan angles", IEEE Trans. Microw. Theory Techn., vol. 69, no. 3, pp. 1955-1964, Mar. 2021.
29.
R. Wansch, "A method for measuring G/T antenna performance in an anechoic chamber", Proc. 3rd Eur. Conf. Antennas Propag., pp. 2212-2215, 2009.
30.
J. P. Dunsmore, "OTA G/T measurements of active phased array antenna noise using a vector network analyzer", Proc. 94th ARFTG Microw. Meas. Symp. (ARFTG), pp. 1-4, Jan. 2020.

Contact IEEE to Subscribe

References

References is not available for this document.