Loading [MathJax]/extensions/MathMenu.js
20.7 A 13.8µW binaural dual-microphone digital ANSI S1.11 filter bank for hearing aids with zero-short-circuit-current logic in 65nm CMOS | IEEE Conference Publication | IEEE Xplore

20.7 A 13.8µW binaural dual-microphone digital ANSI S1.11 filter bank for hearing aids with zero-short-circuit-current logic in 65nm CMOS


Abstract:

This paper presents an ANSI S1.11 1/3-octave filter-bank chip for binaural hearing aids with two microphones per ear. Binaural multimicrophone systems significantly suppr...Show More

Abstract:

This paper presents an ANSI S1.11 1/3-octave filter-bank chip for binaural hearing aids with two microphones per ear. Binaural multimicrophone systems significantly suppress noise interference and preserve interaural time cues at the cost of significantly higher computational and power requirements than monophonic single-microphone systems. With clock rates around the 1MHz mark, these systems are ideal candidates for low-power implementation through charge-recovery design. At such low clock frequencies, however, charge-recovery logic suffers from short-circuit currents that limit its theoretical energy efficiency [1]. The chip described in this paper is designed in 65nm CMOS using a new charge-recovery logic, called zero-short-circuit-current (ZSCC) logic, that drastically reduces short-circuit current. It processes 4 input streams at 1.75MHz with a charge recovery rate of 92%, achieving 9.7× lower power per input compared with the 40nm monophonic single-input chip that represents the published state of the art [2].
Date of Conference: 05-09 February 2017
Date Added to IEEE Xplore: 06 March 2017
ISBN Information:
Electronic ISSN: 2376-8606
Conference Location: San Francisco, CA, USA

This paper presents an ANSI S1.111/3-octave filter-bank chip for binaural hearing aids with two microphones per ear. Binaural multimicrophone systems significantly suppress noise interference and preserve interaural time cues at the cost of significantly higher computational and power requirements than monophonic single-microphone systems. With clock rates around the 1 MHz mark, these systems are ideal candidates for low-power implementation through charge-recovery design. At such low clock frequencies, however, charge-recovery logic suffers from short-circuit currents that limit its theoretical energy efficiency [1]. The chip described in this paper is designed in 65nm CMOS using a new charge-recovery logic, called zero-short-circuit-current (ZSCC) logic, that drastically reduces short-circuit current. It processes 4 input streams at 1.75MHz with a charge recovery rate of 92%, achieving 9.7× lower power per input compared with the 40nm monophonic single-input chip that represents the published state of the art [2].

Contact IEEE to Subscribe

References

References is not available for this document.