Simple observers for Hamiltonian systems | IEEE Conference Publication | IEEE Xplore

Simple observers for Hamiltonian systems


Abstract:

This paper extends our earlier work (Lohmiller and Slotine, 1996) on contraction analysis for nonlinear systems. Specifically, it focuses on applications to Hamiltonian s...Show More

Abstract:

This paper extends our earlier work (Lohmiller and Slotine, 1996) on contraction analysis for nonlinear systems. Specifically, it focuses on applications to Hamiltonian systems, and in particular on the design of globally convergent observers for these systems.
Date of Conference: 06-06 June 1997
Date Added to IEEE Xplore: 06 August 2002
Print ISBN:0-7803-3832-4
Print ISSN: 0743-1619
Conference Location: Albuquerque, NM, USA
References is not available for this document.

Select All
1.
Aris, Vectors tensors and the basic equations of fluid mechanics, Prentice Hall, 1962.
2.
V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer Verlag, 1978.
3.
H. Berghuis and H. Nijmeyer, "A passivity-based approach to controller-observer design for robots", I.E.E.E. Trans. Robotics and Automation, vol. 9, no. 6, 1993.
4.
Fluegge, Tensor Analysis and Continuum Mechanics, Springer Verlag, 1972.
5.
W. Hahn, Stability of motion, Springer Verlag, 1967.
6.
Α. Isidori, Nonlinear Control Systems, Springer Verlag, 1995.
7.
H. Khalil, Nonlinear Systems, Prentice-Ηall, 1995.
8.
N. N. Krasovskii, Problems of the Theory of Stability of Motion, Moskow:Mir.
9.
D. A. Lawrence and W. J. Rugh, "Gain-scheduling dynamic linear controllers for a nonlinear plant", Automatica, vol. 31, no. 3, 1995.
10.
W. Lohmiller and J. J. E. Slotine, "Metric Observers for Nonlinear Systems", I.E.E.E. Int. Conf. on Control Applications, 1996.
11.
W. Lohmiller and J. J. E. Slotine, "Applications of Metric Observers for Nonlinear Systems", I.E.E.E. Int. Conf. on Control Applications, 1996.
12.
W. Lohmiller and J.-J. E. Slotine, "On Metric Controllers for Nonlinear Systems", I.E.E.E. Conf. Decision and Control, 1996.
13.
D. Lovelock and H. Rund, Tensors differential forms and variational principles, Wiley-Interscience, 1975.
14.
D. Luenberger, Introduction to Dynamic Systems, Wiley, 1979.
15.
R. Marino and T. Tomei, Nonlinear Control, Prentice-Hall, 1995.
16.
H. Nijmeyer and Α. Van der Schaft, Nonlinear Dynamical Control Systems, Springer Verlag, 1991.
17.
L. Schwartz, Analyse, Paris:Hermann, 1993.
18.
J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, 1991.
19.
M. Takegaki and S. Arimoto, J. Dyn. Sys. Meas. Cont., pp. 102, 1981.
Contact IEEE to Subscribe

References

References is not available for this document.