Loading web-font TeX/Math/Italic
Characterization and analysis of OFET devices based on TCAD simulations | IEEE Journals & Magazine | IEEE Xplore

Characterization and analysis of OFET devices based on TCAD simulations


Abstract:

Omega-field-effect transistor (OFET) devices, which feature an undoped cylindrical channel uniformly surrounded by a gate electrode, are investigated in this paper. The s...Show More

Abstract:

Omega-field-effect transistor (OFET) devices, which feature an undoped cylindrical channel uniformly surrounded by a gate electrode, are investigated in this paper. The study is based on TCAD device simulations of OFETs with gate lengths ranging between 10 and 130 nm and radii ranging between 1 and 65 nm. Device characteristics such as the threshold voltage, the subthreshold swing, the drain saturation, and leakage current as well as drain-induced barrier lowering are discussed as functions of radii and gate lengths. Further, the influence of transversal and longitudinal size quantization effects in OFETs are investigated.
Published in: IEEE Transactions on Electron Devices ( Volume: 52, Issue: 9, September 2005)
Page(s): 2034 - 2041
Date of Publication: 30 September 2005

ISSN Information:

References is not available for this document.

I. Introduction

Finfet transistors are very promising candidates to extend the scalability of CMOS technology. Industry is currently exploring several variations of FinFET devices [1] [2] [3]. All FinFET structures feature a channel area, which is completely surrounded by oxide, and surrounded on at least three sides by the gate electrode.

Select All
1.
H.-S. P. Wong, "Beyond the conventional transistor", IBM J. Res. Dev., vol. 46, no. 2/3, pp. 133-168, 2002.
2.
B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros, et al., "Transistor elements for 30 nm physical gate lengths and beyond", Intel Tech. J. Semicond. Tech. Manufact., vol. 6, no. 2, pp. 42-54.
3.
B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, et al., "FinFET scaling to 10 nm gate length", IEDM Tech. Dig., pp. 251-254, 2002.
4.
B. S. Doyle, S. Datta, M. Doczy, S. Hareland, J. Lin, J. Kavalierosm, et al., "High performance fully-depleted tri-gate CMOS transistors", IEEE Electron Device Lett., vol. 24, no. 4, pp. 263-265, Apr. 2003.
5.
W. Xiong, J. W. Park and J.-P. Colinge, "Corner effects in multiple-gate SOI MOSFETs", Proc. SOI 2003, pp. 111-112, 2003.
6.
F.-L. Yang, "5 nm-gate nanowire FinFET", Symp. VLSI Tech. Dig., pp. 196-197, 2004.
7.
H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi, et al., "High performance surrounding gate transistor (SGT) for ultra high density LSIs", IEDM Tech. Dig., pp. 222-225, 1988.
8.
S. Miyano, M. Hirose and F. Masuoka, "Numerical analysis of cylindrical thin-pillar transistors (CYNTHIA)", IEEE Trans. Electron Devices, vol. 39, no. 8, pp. 1876-1881, Aug. 1992.
9.
C. P. Auth and J. D. Plummer, "Scaling theory for cylindrical fully-depleted sourroundingf-gate MOSFETs", IEEE Electron Device Lett., vol. 18, no. 2, pp. 74-76, Feb. 1997.
10.
A. Kranti, Rashmi, S. Haldar and R. S. Gupta, "Design and optimization of thin film fully depleted vertical surrounding gate (VSG) MOSFETs for enhanced short channel immunity", Solid State Electron., vol. 46, pp. 1333-1338, 2002.
11.
S.-H. Oh and J. M. Hergenrother, "Analytic description of short-channel effects in fully-depleted double-gate and cylindrical surrounding-gate MOSFETs", IEEE Electron Device Lett., vol. 21, no. 9, pp. 445-447, Sep. 2000.
12.
J. Wang, P. M. Solomon and M. Lundstrom, "A general approach for the performance assessment of nanoscale silicon FETs", IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1366-1370, Sep. 2004.
13.
E. P. Pokatilov, V. M. Fomin, S. N. Balaban, V. N. Gladilin, S. N. Klimin, J. T. Devreese, et al., "Distribution of fields and charge carriers in a cylindrical nanosize silicon-based metal̵oxide̵semoconductor structures", J. Appl. Phys., vol. 85, no. 9, pp. 6625-6631, 1999.
14.
S. N. Balaban, E. P. Pokatilov, V. M. Fomin, V. N. Gladilin, J. T. Devreese, W. Magnus, et al., " Quantum transport in a cylindrical sub0.1 mu{hbox {m}} silicon based MOSFET ", Solid State Electron., vol. 46, pp. 435-444, 2002.
15.
S. Saha, " Effects of inversion layer quantization on channel profile engineering for nMOSFETs with 0.1 mu{hbox {m}} channel length ", Solid State Electron., vol. 42, no. 11, pp. 1985-1991, 1998.
16.
DESSIS 9.5 Reference Manual, 2004.
17.
R. Granzner, V. M. Polyakov, F. Schwoerz, M. Kittler and T. Doll, "On the suitability of DD and HD models for the simulation of nanometer double-gate MOSFETs", Phys. E, vol. 19, pp. 33-38, 2003.
18.
M. Gritsch, H. Kosina, T. Grasser and S. Selberherr, "Revision of the standard hydrodynamic transport model for SOI simulations", IEEE Trans. Electron Devices, vol. 49, no. 10, pp. 1814-1829, Oct. 2002.
19.
Munteanu and G. L. Carval, "Assesment of anormalous behavior in hydrodynamic simualtions of CMOS bulk and partially depleted devices", J. Electrochem. Soc., vol. 149, pp. G574-580, 2002.
20.
B. Polsky, O. Penzin, K. E. Sayed, A. Schenk, A. Wettstein and W. Fichter, "On negative differential resistance in hydrodynamic simulations of partially depleted SOI transistors", IEEE Trans. Electron Devices, vol. 52, no. 4, pp. 500-506, Apr. 2005.
21.
M. G. Ancona and H. F. Tiersten, "Macroscopic physics of the silicon inversion layer", Phys. Rev. B Condens. Matter, vol. 35, pp. 7959-7965, 1987.
22.
E. Lyumkis, R. Mickevicius, O. Penzin, B. Polsky, K. E. Sayed, A. Wettstein, et al., "Simulations of ultrathins ultrashort double-gated MOSFETs with the density gradient transport model", Proc. SISPAD, pp. 271-204, 2002.
23.
E. Lyumkis, R. Mickevicius, O. Penzin, B. Polsky, K. E. Sayed, A. Wettstein, et al., "Density gradient transport model for the simulation of ultrathin ultrashort SOI under nonequilibrium conditions", Proc. SOI, pp. 143-144, 2002.
24.
E. Lyumkis, R. Mickevicius, O. Penzin, B. Polsky, K. E. Sayed and A. Wettstein, "Simulation of ultrathin with quantum transport models", Proc. SOI 2001, pp. 49-50, 2001.
25.
Z. Ren, R. Venugopal, S. Datta and M. Lundstrom, "The ballistic nanotransitor: A simulation study", IEDM Tech. Dig., pp. 715-718, 2000.
26.
M. N. Darwish, J. L. Lentz, M. R. Pinto, P. M. Zeitzoff, T. J. Krutsick and H. H. Vuong, "An improved electron and hole mobility model for general purpose device simulation", IEEE Trans. Electron Devices, vol. 44, no. 9, pp. 1529-1538, Sep. 1997.
27.
J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, MA, Boston:Kluwer, 1991.
28.
Y. Tosaka and K. Suzuki, "Scaling-Parameter-Dependent model for subthreshold swing S in double-gate MOSFETs", IEEE Electron Device Lett., vol. 15, no. 11, pp. 466-468, Nov. 1994.
29.
B. Doris, M. Ieong, H. Zhu, Y. Zhang, M. Steen, W. Natzle, et al., "Device design considerations for ultrathin SOI MOSFETs", IEDM Tech. Dig, pp. 27.3.1-27.3.4, 2003.
Contact IEEE to Subscribe

References

References is not available for this document.