Loading web-font TeX/Math/Italic
Ultrawideband Distributed Amplifier With Positive Feedback and Intrastack Coupling | IEEE Journals & Magazine | IEEE Xplore

Ultrawideband Distributed Amplifier With Positive Feedback and Intrastack Coupling


Abstract:

This article presents two wideband distributed amplifiers (DAs) to support high data rate communication. The two DAs, respectively, utilize NMOS-only and PMOS/NMOS hybrid...Show More

Abstract:

This article presents two wideband distributed amplifiers (DAs) to support high data rate communication. The two DAs, respectively, utilize NMOS-only and PMOS/NMOS hybrid gain cells for wideband power amplification in 45-nm CMOS RF silicon-on-insulator (SOI) technology. The gain stages of the proposed NMOS-only DA are capacitively coupled to the input for improving linearity through different biasing modes of each gain stage, while the PMOS/NMOS hybrid DA removes the need for a large on-chip RF choke inductor. Also, the PMOS/NMOS hybrid gain stages can improve amplitude-to-phase modulation (AM-PM) linearity. For both NMOS-only and PMOS/NMOS DAs, intrastack coupling and input-output coupled transmission lines (TLs) are used to support wideband power amplification. Both intrastack coupling and input-output TL coupling are area-efficient. The proposed NMOS-only and PMOS/NMOS hybrid DAs achieve 8.8-/8.0-dB gain, 0.5–137-/ 0.5–67-GHz 3-dB small-signal bandwidth, and 16.5/17.6 peak saturated output power ( P_{\text {SAT}} ) with 15.1%/15.0% peak PAE, respectively. The NMOS-only and PMOS/NMOS DAs support 60-Gbit/s 64-quadrature amplitude modulation (QAM) at 25-GHz carrier frequency with 11.2-/12.4-dBm average output power and 6.5%/5.9% average PAE while maintaining 21.3-/ 21.2-dB SNR [modulation error ratio (MER)]. The PMOS/NMOS DA measures the smallest core chip area among reported CMOS DAs at a similar frequency.
Published in: IEEE Journal of Solid-State Circuits ( Volume: 60, Issue: 1, January 2025)
Page(s): 217 - 229
Date of Publication: 08 July 2024

ISSN Information:

References is not available for this document.

I. Introduction

Over the past few decades, there has been a significant surge in data traffic for both mobile networks and data centers [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], which presents a perennial quest for ultrawide bandwidth, high output power, and high linearity while for a fixed dc power budget [13], [14], [15]. This technology demand has made distributed amplifiers (DAs) an attractive contender due to their ability to support massive bandwidth and superior data rates.

Select All
1.
T.-Y. Huang, N. S. Mannem, S. Li, D. Jung, M.-Y. Huang and H. Wang, "A coupler balun load-modulated power amplifier with extremely wide bandwidth", IEEE Trans. Microw. Theory Techn., vol. 71, no. 4, pp. 1573-1586, Apr. 2023.
2.
D. Lee, J. Park, K.-S. Choi, Y. Liu and H. Wang, "A 137-GHz ultra-wide bandwidth high-linearity CMOS distributed amplifier for high-speed communication", Proc. IEEE 49th Eur. Solid State Circuits Conf. (ESSCIRC), pp. 73-76, Sep. 2023.
3.
O. El-Aassar and G. M. Rebeiz, "A DC-to-108-GHz CMOS SOI distributed power amplifier and modulator driver leveraging multi-drive complementary stacked cells", IEEE J. Solid-State Circuits, vol. 54, no. 12, pp. 3437-3451, Dec. 2019.
4.
N. Hosseinzadeh, A. Jain, R. Helkey and J. F. Buckwalter, "A distributed low-noise amplifier for broadband linearization of a silicon photonic Mach–Zehnder modulator", IEEE J. Solid-State Circuits, vol. 56, no. 6, pp. 1897-1909, Jun. 2021.
5.
N. Hosseinzadeh, K. Fang, L. Valenzuela, C. Schow and J. F. Buckwalter, "A 50-Gb/s optical transmitter based on co-design of a 45-nm CMOS SOI distributed driver and 90-nm silicon photonic Mach–Zehnder modulator", IEEE MTT-S Int. Microw. Symp. Dig., pp. 205-208, Aug. 2020.
6.
L. A. Valenzuela et al., "An 80-Gbps distributed driver with two-tap feedforward equalization in 45-nm CMOS SOI", Proc. IEEE 22nd Topical Meeting Silicon Monolithic Integr. Circuits RF Syst. (SiRF), pp. 49-51, Feb. 2022.
7.
U. Çelik and P. Reynaert, "Robust efficient distributed power amplifier achieving 96 Gbit/s with 10 dBm average output power and 3.7% PAE in 22-nm FD-SOI", IEEE J. Solid-State Circuits, vol. 56, no. 2, pp. 382-391, Feb. 2021.
8.
T.-Y. Huang, S. Li, N. S. Mannem and H. Wang, "A 35–100 GHz continuous mode coupler balun Doherty power amplifier with differential complex neutralization in 250 nm InP", IEEE MTT-S Int. Microw. Symp. Dig., pp. 374-377, Jun. 2021.
9.
H. Lee, B. Yun, H. Jeon, W. Keum, S.-G. Lee and K.-S. Choi, " A D-band wideband low-noise amplifier adopting pseudo-simultaneous noise and input matched dual-peak G max -core ", IEEE Trans. Microw. Theory Techn, vol. 72, no. 5, pp. 3260-3273, 2024.
10.
H.-R. Jeon, B.-H. Yun, H.-K. Lee, S.-G. Lee and K.-S. Choi, "A 250-GHz wideband direct-conversion CMOS receiver adopting baseband equalized low-loss resistive passive mixer", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 70, no. 10, pp. 3852-3856, 2023.
11.
K.-S. Choi, K.-M. Kim, D. R. Utomo, I.-Y. Lee and S.-G. Lee, "A fully integrated 490-GHz CMOS receiver adopting dual-locking receiver-based FLL", IEEE J. Solid-State Circuits, vol. 57, no. 9, pp. 2626-2639, Sep. 2022.
12.
B. Yun, D.-W. Park, K.-S. Choi, H.-J. Song and S.-G. Lee, "245/243 GHz 9.2/10.5 dBm saturated output power 4.6/2.8% PAE and 28/26dB gain power amplifiers in 65 nm CMOS adopting 2-and 4-way power combining", Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), pp. 1-3, Nov. 2021.
13.
G. Nikandish, R. B. Staszewski and A. Zhu, "The (R) evolution of distributed amplifiers: From vacuum tubes to modern CMOS and GaN ICs", IEEE Microw. Mag., vol. 19, no. 4, pp. 66-83, Jun. 2018.
14.
S. Lee et al., "A 2–24 GHz SiGe HBT cascode non-uniform distributed power amplifier using a compact wideband two-section lumped element output impedance transformer", IEEE MTT-S Int. Microw. Symp. Dig., pp. 842-845, Jun. 2021.
15.
I. Ju, S. Lee and J. D. Cressler, "An efficient broadband SiGe HBT non-uniform distributed power amplifier leveraging a compact two-section λ/4 output impedance transformer", IEEE Trans. Microw. Theory Techn., vol. 70, no. 7, pp. 3524-3533, Jul. 2022.
16.
F. Thome and A. Leuther, "First demonstration of distributed amplifier MMICs with more than 300-GHz bandwidth", IEEE J. Solid-State Circuits, vol. 56, no. 9, pp. 2647-2655, Sep. 2021.
17.
O. El-Aassar and G. M. Rebeiz, "A cascaded multi-drive stacked-SOI distributed power amplifier with 23.5 dBm peak output power and over 4.5-THz GBW", IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 3111-3119, Jul. 2020.
18.
O. El-Aassar and G. M. Rebeiz, "A 120-GHz bandwidth CMOS distributed power amplifier with multi-drive intra-stack coupling", IEEE Microw. Wireless Compon. Lett., vol. 30, no. 8, pp. 782-785, Aug. 2020.
19.
K. Fang and J. F. Buckwalter, "Efficient linear millimeter-wave distributed transceivers in CMOS SOI", IEEE Trans. Microw. Theory Techn., vol. 67, no. 1, pp. 295-307, Jan. 2019.
20.
S. Kulkarni and P. Reynaert, "A 60-GHz power amplifier with AM–PM distortion cancellation in 40-nm CMOS", IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, pp. 2284-2291, Jul. 2016.
21.
C.-Y. Hsiao, T.-Y. Su and S. S. H. Hsu, "CMOS distributed amplifiers using gate–drain transformer feedback technique", IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2901-2910, Aug. 2013.
22.
D. M. Pozar, Microwave Engineering, Hoboken, NJ, USA:Wiley, 2011.
23.
Y. Ayasli, S. W. Miller, R. Mozzi and L. K. Hanes, "Capacitively coupled traveling-wave power amplifier", IEEE Trans. Electron Devices, vol. ED-31, no. 12, pp. 1937-1942, Dec. 1984.
24.
K. K. Moez and M. I. Elmasry, "A novel matrix-based lumped-element analysis method for CMOS distributed amplifiers", Proc. IEEE Int. Symp. Circuits Syst., pp. 1048, Mar. 2004.
25.
J. Kim and J. F. Buckwalter, "A 92 GHz bandwidth distributed amplifier in a 45 nm SOI CMOS technology", IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp. 329-331, Jun. 2011.
26.
Y.-M. Wu, Y.-H. Kao and T.-S. Chu, "A 68-GHz loss compensated distributed amplifier using frequency interleaved technique in 65-nm CMOS technology", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 1, pp. 29-39, Jan. 2022.
27.
M. M. Tarar and R. Negra, " Design and implementation of wideband stacked distributed power amplifier in 0.13- mu m CMOS using uniform distributed topology ", IEEE Trans. Microw. Theory Techn., vol. 65, no. 12, pp. 5212-5222, Dec. 2017.
28.
M. El-Chaar, L. Vincent, J.-D. Arnould, A. A. L. de Souza, S. Bourdel and F. Podevin, "Accurate design method for millimeter wave distributed amplifier based on four-port chain (ABCD) matrix model", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 69, no. 11, pp. 4510-4523, Nov. 2022.
29.
Y. Zhang and K. Ma, "A 2–22 GHz CMOS distributed power amplifier with combined artificial transmission lines", IEEE Microw. Wireless Compon. Lett., vol. 27, no. 12, pp. 1122-1124, Dec. 2017.
30.
K. Fang, C. S. Levy and J. F. Buckwalter, "Supply-scaling for efficiency enhancement in distributed power amplifiers", IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 1994-2005, Sep. 2016.
Contact IEEE to Subscribe

References

References is not available for this document.