On Superior Hot Carrier Robustness of Dynamically-Doped Field-Effect-Transistors | IEEE Conference Publication | IEEE Xplore

On Superior Hot Carrier Robustness of Dynamically-Doped Field-Effect-Transistors


Abstract:

We simulate relative changes of the saturation drain current during hot-carrier degradation (HCD) in dynamically-doped (D2) and "traditional" planar complementary metal-o...Show More

Abstract:

We simulate relative changes of the saturation drain current during hot-carrier degradation (HCD) in dynamically-doped (D2) and "traditional" planar complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) of gate lengths and doping profiles. To achieve this goal, we use our physics-based model for HCD validated against experimental data from a broad range of transistor architectures (which include but are not limited to planar, fin, and nanowire FETs). These simulations show that at lower gate voltages of Vgs ≤ 0.9 V (i.e. covering the operating regime) D2 FETs have superior HC reliability compared to their CMOS counterparts, while at Vgs > 1.0 V the CMOS FET begins to be more reliable (at shorter stress times, however, the D2 device is still superior). Under these low stress voltages, HCD is governed by the multiple-carrier process of bond dissociation controlled by the carrier concentration (rather than energy), which has different Vgs dependences in D2 and CMOS FETs. Based on conducted calculations, we suggest that, in addition to better performance and scalability compared to the CMOS counterpart, the D2 FET has also superior hot-carrier reliability.
Date of Conference: 27-31 March 2022
Date Added to IEEE Xplore: 02 May 2022
ISBN Information:

ISSN Information:

Conference Location: Dallas, TX, USA

Funding Agency:

References is not available for this document.

I. Introduction

Recently proposed dynamically-doped (D2) field-effect-transistors (FETs) [1] have the gate contact placed at the opposite side of the FET with respect to the source/drain contacts (Fig. 1, top panel). This device topology enables faster scaling by exploiting the space used to separate source/drain and gate contacts employed in the "traditional" planar complementary metal-oxide-semiconductor (CMOS) architecture sketched in Fig. 1, bottom panel.

Select All
1.
Afzalian Aryan, "Ab Initio Perspective of Ultra-Scaled CMOS from 2D-material Fundamentals to Dynamically Doped Transistors", npj 2D Materials and Applications, vol. 5, no. 1, pp. 5, 2021.
2.
A. Rahman, J. Dacuna, P. Nayak, G. Leatherman and S. Ramey, "Reliability Studies of a 10nm High-performance and Low-power CMOS Technology Featuring 3rd Generation FinFET and 5th Generation HK/MG", 2018 IEEE International Reliability Physics Symposium (IRPS), pp. 6F.4-1-6F.4-6, March 2018.
3.
P. Paliwoda, Z. Chbili, A. Kerber, T. Nigam, K. Nagahiro, S. Cimino, et al., "Self-Heating Effects on Hot Carrier Degradation and Its Impact on Logic Circuit Reliability", IEEE Transactions on Device and Materials Reliability, vol. 19, no. 2, pp. 249-254, June 2019.
4.
S. Tyaginov, M. Bina, J. Franco, D. Osintsev, O. Triebl, B. Kaczer, et al., "Physical Modeling of Hot-Carrier Degradation for Short- and Long-Channel MOSFETs", Proc. International Reliability Physics Symposium (IRPS), pp. XT.16-1-16-8, 2014.
5.
S. Tyaginov, M. Jech, J. Franco, P. Sharma, B. Kaczer and T. Grasser, "Understanding and Modeling the Temperature Behavior of Hot-Carrier Degradation in SiON nMOSFETs", IEEE Electron Device Letters, vol. 37, no. 1, pp. 84-87, Jan 2016.
6.
F.-C. Hsu and K.-Y. Chu, "Temperature Dependence of Hot-Electron Induced Degradation in MOSFET’s", IEEE Electron Device Letters, vol. 5, no. 5, pp. 148-150, 1984.
7.
M. Song, K. MacWilliams and C. Woo, "Comparison of NMOS and PMOS Hot Carrier Effects from 300 to 77 K", IEEE Transactions Electron Devices, vol. 44, no. 2, pp. 268-276, 1997.
8.
A. Bravaix, D. Goguenheim, N. Revil, E. Vincent, M. Varrot and P. Mortini, " Analysis of High Temperatures Effects on Performance and Hot-Carrier Degradation in DC/AC Stressed 0.35 µ m n-MOSFETs ", Microel. Reliab, vol. 39, no. 1, pp. 35-44, 1999.
9.
C. Lin, S. Biesemans, L. Han, K. Houlihan, T. Schiml, K. Schruefer, et al., " Hot Carrier Reliability for 0.13 µ m CMOS Technology with Dual Gate Oxide Thickness ", Proc. International Electron Devices Meeting (IEDM), pp. 135-138, 2000.
10.
M. Jo, S. Kim, C. Cho, M. Chang and H. Hwang, "Gate Voltage Dependence on Hot Carrier Degradation at an Elevated Temperature in a Device with Ultrathin Silicon Oxynitride", Appl. Phys. Lett, vol. 94, no. 5, pp. 053 505-1-053 505-3, 2009.
11.
E. Amat, T. Kauerauf, R. Degraeve, R. Rodriguez, M. Nafria, X. Aymerich, et al., "Channel Hot-Carrier Degradation in pMOS and nMOS Short Channel Transistors with High-K Dielectric Stack", Microelectronics Engineering, vol. 87, no. 1, pp. 47-50, 2010.
12.
E. Amat, T. Kauerauf, R. Rodriguez, M. Nafria, X. Aymerich and G. Groeseneken, "A Comprehensive Study of Channel Hot-carrier Degradation in Short Channel MOSFETs with High-k Dielectrics", Microelectronics Engineering, vol. 103, no. 3, pp. 144-149, 2013.
13.
A. Bravaix, V. Huard, D. Goguenheim and E. Vincent, "Hot-Carrier to Cold-Carrier Device Lifetime Modeling with Temperature for Low power 40nm Si-Bulk NMOS and PMOS FETs", Proc. International Electron Devices Meeting (IEDM), pp. 622-625, 2011.
14.
Z. Yu, R. Wang, P. Hao, S. Guo, P. Ren and R. Huang, "Non-Universal Temperature Dependence of Hot Carrier Degradation (HCD) in FinFET: New Observations and Physical Understandings", 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), pp. 34-36, 2018.
15.
A. Grill, E. Bury, J. Michl, S. Tyaginov, D. Linten, T. Grasser, et al., "Reliability and Variability of Advanced CMOS Devices at Cryogenic Temperatures", Proc. International Reliability Physics Symposium (IRPS), pp. 5C.3.1-5C.3.1.6, 2020.
16.
W. McMahon, K. Matsuda, J. Lee, K. Hess and J. Lyding, "The Effects of a Multiple Carrier Model of Interface States Generation of Lifetime Extraction for MOSFETs", Proc. International Conference on Modeling and Simulation of Microsystem, vol. 1, pp. 576-579, 2002.
17.
W. McMahon and K. Hess, "A Multi-Carrier Model for Interface Trap Generation", Journal of Computational Electronics, vol. 1, no. 3, pp. 395-398, Oct 2002, [online] Available: https://doi.org/10.1023/A:1020716111756.
18.
A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux and E. Vincent, "Hot-carrier Acceleration Factors for Low Power Management in DC-AC Stressed 40nm NMOS Node at High Temperature", Proc. International Reliability Physics Symposium (IRPS), pp. 531-546, 2009.
19.
Y. Randriamihaja, X. Federspiel, V. Huard, A. Bravaix and P. Palestri, "New Hot Carrier Degradation Modeling Reconsidering the Role of EES in Ultra Short n-channel MOSFETs", Proc. International Reliability Physics Symposium (IRPS), pp. 1-5, 2013.
20.
S. Reggiani, S. Poli, M. Denison, E. Gnani, A. Gnudi, G. Baccarani, et al., "Physics-Based Analytical Model for HCS Degradation in STI-LDMOS Transistors", IEEE Transactions on Nuclear Science, vol. 58, no. 9, pp. 3072-3079, 2011.
21.
S. Reggiani, G. Barone, E. Gnani, A. Gnudi, G. Baccarani, S. Poli, et al., "Characterization and Modeling of Electrical Stress Degradation in STI-based Integrated Power Devices", Solid-State Electronics, vol. 102, no. 12, pp. 25-41, 2014.
22.
S. Rauch, F. Guarin and G. La Rosa, "Impact of E-E Scattering to the Hot Carrier Degradation of Deep Submicron NMOSFETs", IEEE Electron Dev. Lett, vol. 19, no. 12, pp. 463-465, 1998.
23.
S. E. Rauch and G. L. Rosa, "The energy-driven paradigm of NMOS-FET hot-carrier effects", IEEE Transactions on Device and Materials Reliability, vol. 5, no. 4, pp. 701-705, Dec 2005.
24.
S. J. Bae, S. Kim, W. Kuo and P. H. Kvam, "Statistical Models for Hot Electron Degradation in Nano-Scaled MOSFET Devices", IEEE Transactions on Reliability, vol. 56, no. 3, pp. 392-400, Sep. 2007.
25.
K. Brower, " Dissociation Kinetics of Hydrogen-Passivated (111)Si-Si0 2 Interface Defects ", Physical Review B, vol. 42, no. 6, pp. 3444-3454, 1990.
26.
K. L. Brower and S. M. Myers, "Chemical kinetics of hydrogen and (111) SiSiO2 interface defects", Applied Physics Letters, vol. 57, no. 2, pp. 162-164, 1990, [online] Available: https://doi.org/10.1063/1.103971.
27.
A. Stesmans, " Revision of H 2 Passivation of P 2 Interface Defects in Standard (111)Si/SiO 2 ", Applied Physics Letters, vol. 68, no. 19, pp. 2723-2725, 1996.
28.
A. Stesmans, " Passivation of P b0 and P b1 Interface Defects in Thermal (100) Si/SiO 2 with Molecular Hydrogen ", Appl. Phys. Lett, vol. 68, no. 15, pp. 2076-2078, 1996.
29.
M. Jech, A.-M. El-Sayed, S. Tyaginov, A. L. Shluger and T. Grasser, "Ab initio treatment of silicon-hydrogen bond rupture at Si/SiO 2 interfaces ", Phys. Rev. B, vol. 100, pp. 195302, Nov 2019, [online] Available: https://link.aps.org/doi/10.1103/PhysRevB.100.195302.
30.
C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation, Springer Verlag Wien/New York, 2003.
Contact IEEE to Subscribe

References

References is not available for this document.