Loading web-font TeX/Math/Italic
Digital-Twin-Assisted Task Offloading Based on Edge Collaboration in the Digital Twin Edge Network | IEEE Journals & Magazine | IEEE Xplore

Digital-Twin-Assisted Task Offloading Based on Edge Collaboration in the Digital Twin Edge Network


Abstract:

Emerging digital twin (DT) and mobile-edge computing (MEC) are crucial for enabling the rapid development of 6G. However, the existing works ignore the edge collaboration...Show More

Abstract:

Emerging digital twin (DT) and mobile-edge computing (MEC) are crucial for enabling the rapid development of 6G. However, the existing works ignore the edge collaboration, which can provide the system with additional performance gain. In this article, we study the problem of mobile users (MUs) intelligently offloading tasks to cooperative mobile-edge servers (MESs) with the assistance of DT. Specifically, a DT-assisted task offloading scheme (DTTOS) that consists of the selection of MESs and intelligent task offloading is proposed. Channel state information (CSI) and blockchain are employed to implement the selection of MESs. Then, we present a solution to enable MU’s task offloading that is modeled as a Markov decision process (MDP) in an intelligent way. After this, a mathematical optimization model aiming at decreasing power and time overhead is formulated. In view of the complexity, it is decomposed into two suboptimization models and solved by the decision tree algorithm (DTA) and double deep- Q -learning (DDQN), respectively. Simulations are conducted to prove the superiority of the proposed scheme in terms of data security assurance and network performance improvement.
Published in: IEEE Internet of Things Journal ( Volume: 9, Issue: 2, 15 January 2022)
Page(s): 1427 - 1444
Date of Publication: 07 June 2021

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

An integrated network across regions, airspace, and sea areas will be constructed in 6G to realize global seamless coverage in a true sense [1]. From the perspective of network performance indicators, 6G will greatly improve in terms of the transmission rate, end-to-end delay, reliability, connection density, spectrum efficiency, and energy efficiency, so as to meet the diverse network needs of various vertical industries [2], [3].

Select All
1.
Y. Sun, J. Liu, J. Wang and N. Kato, "When machine learning meets privacy in 6G: A survey", IEEE Commun Surveys Tuts., vol. 22, no. 4, pp. 2694-2724, 4th Quart. 2020.
2.
A. H. Sodhro, S. Pirbhulal, L. Zongwei, K. Muhammad and N. Zahid, "Towards 6G architecture for energy efficient communication in IoT-enabled smart automation systems", IEEE Internet Things J., vol. 8, no. 7, pp. 5141-5148, Apr. 2021.
3.
E. Yaacoub and M. Alouini, "A key 6G challenge and opportunity—Connecting the Base of the pyramid: A survey on rural connectivity", Proc. IEEE, vol. 108, no. 4, pp. 533-582, Apr. 2020.
4.
Y. Liu, M. Peng, G. Shou, Y. Chen and S. Chen, "Toward edge intelligence: Multiaccess edge computing for 5G and Internet of Things", IEEE Internet Things J., vol. 7, no. 8, pp. 6722-6747, Aug. 2020.
5.
C. Shu, Z. Zhao, Y. Han, G. Min and H. Duan, "Multi-user offloading for edge computing networks: A dependency-aware and latency-optimal approach", IEEE Internet Things J., vol. 7, no. 3, pp. 1678-1689, Mar. 2020.
6.
X. Zhang, J. Zhang, J. Xiong, L. Zhou and J. Wei, "Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA", IEEE Internet Things J., vol. 7, no. 6, pp. 5613-5627, Jun. 2020.
7.
U. Saleem, Y. Li, S. Jangsher, X. Tao and Y. Li, "Latency minimization for D2D-enabled partial computation offloading in mobile edge computing", IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4472-4486, Apr. 2020.
8.
C. Gong, F. Lin, X. Gong and Y. Lu, "Intelligent cooperative edge computing in Internet of Things", IEEE Internet Things J., vol. 7, no. 10, pp. 9372-9382, Oct. 2020.
9.
Y. Cao, R. Wang, M. Chen and A. Barnawi, "AI agent in software-defined network: Agent-based network service prediction and wireless resource scheduling optimization", IEEE Internet Things J., vol. 7, no. 7, pp. 5816-5826, Jul. 2020.
10.
X. Liao, J. Shi, Z. Li, L. Zhang and B. Xia, "A model-driven deep reinforcement learning heuristic algorithm for resource allocation in ultra-dense cellular networks", IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 983-997, Jan. 2020.
11.
F. Wang, R. Qin, J. Li, Y. Yuan and X. Wang, "Parallel societies: A computing perspective of social digital twins and virtual-real interactions", IEEE Trans. Comput. Soc. Syst., vol. 7, no. 1, pp. 2-7, Feb. 2020.
12.
R. Minerva, G. M. Lee and N. Crespi, "Digital twin in the IoT context: A survey on technical features scenarios and architectural models", Proc. IEEE, vol. 108, no. 10, pp. 1785-1824, Oct. 2020.
13.
C. Gehrmann and M. Gunnarsson, "A digital twin based industrial automation and control system security architecture", IEEE Trans Ind. Informat., vol. 16, no. 1, pp. 669-680, Jan. 2020.
14.
L. D. L. Torre, L. T. Neustock, G. K. Herring, J. Chacon, F. J. G. Clemente and L. Hesselink, "Automatic generation and easy deployment of digitized laboratories", IEEE Trans. Ind. Informat., vol. 16, no. 12, pp. 7328-7337, Dec. 2020.
15.
I. Yaqoob, K. Salah, M. Uddin, R. Jayaraman, M. Omar and M. Imran, "Blockchain for digital twins: Recent advances and future research challenges", IEEE Netw., vol. 34, no. 5, pp. 290-298, Sep./Oct. 2020.
16.
Y. Lu, X. Huang, K. Zhang, S. Maharjan and Y. Zhang, "Communication-efficient federated learning for digital twin edge networks in industrial IoT", IEEE Trans Ind. Informat., vol. 17, no. 8, pp. 5709-5718, Aug. 2021.
17.
Y. Lu, X. Huang, K. Zhang, S. Maharjan and Y. Zhang, "Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks", IEEE Trans Ind. Informat., vol. 17, no. 7, pp. 5098-5107, Jul. 2021.
18.
W. Sun, H. Zhang, R. Wang and Y. Zhang, "Reducing offloading latency for digital twin edge networks in 6G", IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12240-12251, Oct. 2020.
19.
G. Faraci, C. Grasso and G. Schembra, "Design of a 5G network slice extension with MEC UAVs managed with reinforcement learning", IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2356-2371, Oct. 2020.
20.
P. Yang, Y. Zhang and J. Lv, "Load optimization based on edge collaboration in software defined ultra-dense networks", IEEE Access, vol. 8, pp. 30664-30674, 2020.
21.
H. Yang, Y. Liang, J. Yuan, Q. Yao, A. Yu and J. Zhang, "Distributed blockchain-based trusted multidomain collaboration for mobile edge computing in 5G and beyond", IEEE Trans Ind. Informat., vol. 16, no. 11, pp. 7094-7104, Nov. 2020.
22.
J. Feng, F. R. Yu, Q. Pei, X. Chu, J. Du and L. Zhu, "Cooperative computation offloading and resource allocation for blockchain-enabled mobile-edge computing: A deep reinforcement learning approach", IEEE Internet Things J., vol. 7, no. 7, pp. 6214-6228, Jul. 2020.
23.
F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu and K. Yang, "Deep-learning-based joint resource scheduling algorithms for hybrid MEC networks", IEEE Internet Things J., vol. 7, no. 7, pp. 6252-6265, Jul. 2020.
24.
J. Wang, J. Hu, G. Min, A. Y. Zomaya and N. Georgalas, "Fast adaptive task offloading in edge computing based on meta reinforcement learning", IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242-253, Jan. 2021.
25.
F. Pires, A. Cachada, J. Barbosa, A. P. Moreira and P. Leitão, "Digital twin in industry 4.0: Technologies applications and challenges", Proc. IEEE 17th Int. Conf. Ind. Informat. (INDIN), pp. 721-726, 2019.
26.
F. Biesinger, B. Kra and M. Weyrich, "A survey on the necessity for a digital twin of production in the automotive industry", Proc. 23rd Int. Conf. Mechatron. Technol. (ICMT), pp. 1-8, 2019.
27.
M. Milton, C. De La O, H. L. Ginn and A. Benigni, "Controller-embeddable probabilistic real-time digital twins for power electronic converter diagnostics", IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9850-9864, Sep. 2020.
28.
E. G. Kaigom and J. Rossmann, "Value-driven robotic digital twins in cyber-physical applications", IEEE Trans Ind. Informat., vol. 17, no. 5, pp. 3609-3619, May 2021.
29.
L. Zhao, G. Han, Z. Li and L. Shu, "Intelligent digital twin-based software-defined vehicular networks", IEEE Netw., vol. 34, no. 5, pp. 178-184, Sep./Oct. 2020.
30.
A. F. Mendi, T. Erol and D. Dogan, "Digital twin in the military field", IEEE Internet Comput., Feb. 2021.
Contact IEEE to Subscribe

References

References is not available for this document.