Loading web-font TeX/Math/Italic
Continuous-wave low-threshold performance of 1.3-/spl mu/m InGaAs-GaAs quantum-dot lasers | IEEE Journals & Magazine | IEEE Xplore

Continuous-wave low-threshold performance of 1.3-/spl mu/m InGaAs-GaAs quantum-dot lasers


Abstract:

The understanding of material quality and luminescence characteristics of InGaAs-GaAs quantum dots (QD's) is advancing rapidly. Intense work in this area has been stimula...Show More

Abstract:

The understanding of material quality and luminescence characteristics of InGaAs-GaAs quantum dots (QD's) is advancing rapidly. Intense work in this area has been stimulated by the recent demonstration of lasing from a QD active region at the technologically important 1.3-/spl mu/m wavelength from a GaAs-based heterostructure laser. Already, several groups have achieved low-threshold currents and current densities at room temperature from In(Ga)As QD active regions that emit at or close to 1.3 /spl mu/m. In this paper, we discuss crystal growth, QD emission efficiency, and low-threshold lasing characteristics for 1.3-/spl mu/m InGaAs-GaAs QD active regions grown using submonolayer depositions of In, Ga, and As. Oxide-confinement is effective in obtaining a low-threshold current of 1.2 mA and threshold-current density of 19 A/cm/sup 2/ under continuous-wave (CW) room temperature (RT) operation. At 4 K, a remarkably low threshold-current density of 6 A/cm/sup 2/ is obtained.
Published in: IEEE Journal of Selected Topics in Quantum Electronics ( Volume: 6, Issue: 3, May-June 2000)
Page(s): 452 - 461
Date of Publication: 06 August 2002

ISSN Information:

References is not available for this document.

Select All
1.
D. L. Huffaker, G. Park, Z. Zou, O.B. Shchekin and D. G. Deppe, " 1.3  mu m room temperature GaAs-based quantum dot laser ", Appl. Phys. Lett., vol. 73, pp. 2564-2566, 1998.
2.
G. Park, D. L. Huffaker, Z. Zou, O. B. Shchekin and D. G. Deppe, " Temperature dependence of lasing characteristics for long-wavelength (1.3  mu m) GaAs-based quantum dot lasers ", IEEE Photon. Technol. Lett., vol. 11, pp. 301-303, 1999.
3.
L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, et al., " Optical characteristics of 1.24  mu m InAs quantum-dot laser diodes ", IEEE Photon. Technol. Lett., vol. 11, pp. 931-933, 1999.
4.
S. Mukai, N. Ohtsuka, H. Shoji, M. Sugawara, N. Yokoyama and H. Ishikawa, " 1.3  mu m CW lasing of InGaAs/GaAs quantum dots at room temperature with a threshold current of 8 mA ", IEEE Photon. Technol. Lett., vol. 11, pp. 1205-1207, 1999.
5.
G. Park, O. B. Shchekin, S. Csutak and D. G. Deppe, " Room-temperature continuous-wave operation of a single-layered 1.3  mu m quantum dot laser ", Appl. Phys. Lett., vol. 75, pp. 3267-3269, 1999.
6.
G. T. Liu, A. Stintz, H. Li, K. J. Malloy and L. F. Lester, " Extremely low room-temperature threshold current density diode lasers using InAs dots in an In _{0.15} Ga _{0.85} As quantum well ", Electron. Lett., vol. 35, pp. 1163-1165, 1999.
7.
D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park and O. B. Shchekin, " Spontaneous emission and threshold characteristics of 1.3  mu m InGaAs/GaAs quantum dot GaAs-based lasers ", IEEE J. Quantum Electron., vol. 35, pp. 1238-1246, 1999.
8.
Y. M. Shernyakov, D. A. Bedarev, E. Y. Kondrat'eva, P. S. Kop'ev, A. R. Kovsh, N. A. Maleev, et al., " 1.3  mu m GaAs-based laser using quantum dots obtained by activated spinodal decomposition ", Electron. Lett., vol. 35, pp. 898-900, 1999.
9.
A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, Y. M. Shernyakov, S. S. Mikhrin, N. A. Maleev, et al., "Continuous-wave operation of long-wavelength quantum dot diode laser on a GaAs substrate", IEEE Photon. Technol. Lett., vol. 11, pp. 1345-1347, Nov. 1999.
10.
G. Park, O. B. Shchekin, D. L. Huffaker and D. G. Deppe, "Low threshold oxide-confined quantum dot laser", IEEE Photon. Technol. Lett., vol. 13, pp. 230-232, 2000.
11.
D. L. Huffaker, H. Deng and D. G. Deppe, " 1.15  mu m wavelength oxide-confined quantum dot vertical-cavity surface-emitting laser ", IEEE Photon. Technol. Lett., vol. 10, pp. 185-187, 1998.
12.
J. M. Gerard, D. Barrier, J. Y. Marzin, R. Duszelewicz, L. Manin, E. Costard, et al., "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case", Appl. Phys. Lett., vol. 69, pp. 449-541, 1996.
13.
D. L. Huffaker, L. A. Graham and D. G. Deppe, "Low-threshold continuous-wave operation of an oxide-confined vertical-cavity surface-emitting laser based on a quantum dot active region and half-wave cavity", Electron. Lett., vol. 33, pp. 1225-1226, 1997.
14.
J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity", Phys. Rev. Lett., vol. 81, pp. 1110-1112, 1998.
15.
L. A. Graham, D. L. Huffaker and D. G. Deppe, "Spontaneous lifetime control in a native-oxide-apertured microcavity", Appl. Phys. Lett., vol. 74, pp. 2408-2410, 1999.
16.
J. K. Kim, T. A. Strand, R. L. Naone and L. A. Coldren, "Design parameters for lateral carrier confinement in quantum dot lasers", Appl. Phys. Lett., vol. 74, pp. 2752-2754, 1999.
17.
D. G. Deppe and H. Huang, "Quantum dot vertical cavity surface emitting laser based on the Purcell Effect", Appl. Phys. Lett., vol. 75, pp. 3455-3457, 1999.
18.
K. Mukai, O. Nobuyuki, S. Mitsuru and S. Yamzaki, " Self-formed In _{0.5} Ga _{0.5} As quantum dots on GaAs substrates emitting at 1.3  mu ", Jpn. J. Appl. Phys., vol. 33, pp. L1710-L1712, 1994.
19.
R. P. Mirin, J. P. Ibbetson, K. Nishi, A. C. Gossard and J. E. Bowers, "1.3 photoluminescence from InGaAs quantum dots on GaAs", Appl. Phys. Lett., vol. 67, pp. 3795-3997, 1995.
20.
D. L. Huffaker and D. G. Deppe, " Electroluminescence efficiency of 1.3  mu m wavelength InGaAs/GaAs quantum dots ", Appl. Phys. Lett., vol. 73, pp. 520-522, 1998.
21.
Y. Arakawa and A. Yariv, "Quantum well lasers̵Gain spectra dynamics", IEEE J. Quantum Electron., vol. QE-22, pp. 1887-1897, 1986.
22.
M. Asada, Y. Miyamoto and Y. Suematsu, "Gain and threshold of three-dimensional quantum box lasers", IEEE J. Quantum Electron., vol. QE-22, pp. 1915-1921, 1986.
23.
Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current", Appl. Phys. Lett., vol. 40, pp. 939-941, 1982.
24.
N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, et al., " Low threshold large T_{o} injection laser emission from InGaAs quantum dots ", Electron. Lett., vol. 30, pp. 1416-1417, 1994.
25.
D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop'ev and V. M. Ustinov, "InGaAs̵GaAs quantum dot lasers", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 196-205, 1997.
26.
T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy and L. F. Lester, "Gain and linewidth enhancement factor in InAs quantum dot laser diodes", IEEE Photon. Technol. Lett., vol. 11, pp. 1527-1529, 1999.
27.
L. V. Asryan and R. A. Suris, "Inhomogeneous linewidth broadening and the threshold current density of a semiconductor quantum dot laser", Semicond. Sci. Technol., vol. 11, pp. 554-567, 1996.
28.
L. V. Asryan and R. A. Suris, "Temperature dependence of the threshold current density of a quantum dot laser", IEEE J. Quantum Electron., vol. 34, pp. 841-850, 1998.
29.
J. C. Campbell, D. L. Huffaker, H. Deng and D. G. Deppe, " Quantum dot resonant cavity photodiode with operation near 1.3  mu m wavelength ", Electron. Lett., vol. 33, pp. 1337-1339, 1997.
30.
S. Krishna, J. Xu, D. Zhu, K. Linder, O. Qasaimeh, P. Bhattacharya, et al., " Structural and luminescence characteristics of cycled submonolayer InAs/GaAs quantum dots with room temperature emission at 1.3  mu ", Appl. Phys. Lett., vol. 86, pp. 6135-6138, 1999.
Contact IEEE to Subscribe

References

References is not available for this document.