Loading [MathJax]/extensions/MathZoom.js
Parametric Study of p-n Junctions and Structures for CMOS-Integrated Single-Photon Avalanche Diodes | IEEE Journals & Magazine | IEEE Xplore

Parametric Study of p-n Junctions and Structures for CMOS-Integrated Single-Photon Avalanche Diodes


Abstract:

Single-photon avalanche diodes (SPADs) have emerged as the primary solid-state photodetectors for use in time-resolved imaging and very low light optical detection for th...Show More

Abstract:

Single-photon avalanche diodes (SPADs) have emerged as the primary solid-state photodetectors for use in time-resolved imaging and very low light optical detection for their high sensitivity, fast impulse response, and CMOS process compatibility. For each application, diode structure and size must be optimized empirically, where device performance is difficult to predict theoretically. To assist in this iterative design process, this paper presents side-by-side characterization of multiple SPAD structures implemented using different p-n junctions in a single, deep sub-micron CMOS process. Detailed characterization of the sensors enables comparative analysis of important performance parameters, such as dark count rate and spectral response, across multiple p-n junction types, device structures, and SPAD size variants. A new approach for experimental analysis of after-pulsing is also presented. The characterized SPAD test array comprises multiple size and structural variants implemented in a general purpose 180nm CMOS process.
Published in: IEEE Sensors Journal ( Volume: 18, Issue: 13, 01 July 2018)
Page(s): 5291 - 5299
Date of Publication: 11 May 2018

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Solid-State imagers enable state-of-the-art quantification of visible light in applications from biology, chemistry, medicine, and many other fields of science and engineering [1], [2]. In conventional silicon imagers, charged-coupled devices or CMOS photodetectors are widely used as pixel sensors, but these are limited by low-light performance and slow response [3], [4]. For fast or high-sensitivity applications, including medical imaging and light detection and ranging (LiDAR), low-light detection and fast impulse response are critical. These aims can be achieved using single-photon avalanche diode (SPAD) devices, which enable high sensitivity, fast response, and CMOS-integrability [5], [6]. SPAD detectors can also be used in conjunction with conventional photodetector-based imaging to extend optical dynamic range for visible light sensing [7]–[9].

Select All
1.
R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau and R. Genov, "A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 57, no. 5, pp. 1029-1038, May 2010.
2.
L. Carrara, C. Niclass, N. Scheidegger, H. Shea and E. Charbon, "A gamma X-ray and high energy proton radiation-tolerant CIS for space applications", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 40-41,41a, Feb. 2009.
3.
E. W. Bogaart, W. Hoekstra, I. M. Peters, A. C. M. Kleimann and J. T. Bosiers, "Very low dark current CCD image sensor", IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2462-2467, Nov. 2009.
4.
E. R. Fossum, "CMOS image sensors: Electronic camera-on-a-chip", IEEE Trans. Electron Devices, vol. 44, no. 10, pp. 1689-1698, Oct. 1997.
5.
C. Niclass, A. Rochas, P.-A. Besse and E. Charbon, "Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes", IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1847-1854, Sep. 2005.
6.
D. E. Schwartz, E. Charbon and K. L. Shepard, "A single-photon avalanche diode array for fluorescence lifetime imaging microscopy", IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2546-2557, Nov. 2008.
7.
M. Mori et al., " A 1280times720 single-photon-detecting image sensor with 100 dB dynamic range using a sensitivity-boosting technique ", Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 120-121, Jan./Feb. 2016.
8.
H. Ouh, S. Sengupta, S. Bose and M. L. Johnston, "Dual-mode enhanced dynamic range CMOS optical sensor for biomedical applications", Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS), pp. 1-4, Oct. 2017.
9.
H. Ouh and M. L. Johnston, "Dual-mode in-pixel linear and single-photon avalanche diode readout for low-light dynamic range extension in photodetector arrays", Proc. IEEE Custom Integr. Circuits Conf. (CICC), pp. 1-4, Apr. 2018.
10.
D. Bronzi, F. Villa, S. Tisa, A. Tosi and F. Zappa, "SPAD figures of merit for photon-counting photon-timing and imaging applications: A review", IEEE Sensors J., vol. 16, no. 1, pp. 3-12, Jan. 2016.
11.
A. Rochas et al., "First fully integrated 2-D array of single-photon detectors in standard CMOS technology", IEEE Photon. Technol. Lett., vol. 15, no. 7, pp. 963-965, Jul. 2003.
12.
N. Faramarzpour, M. J. Deen, S. Shirani and Q. Fang, " Fully integrated single photon avalanche diode detector in standard CMOS 0.18~mu m technology ", IEEE Trans. Electron Devices, vol. 55, no. 3, pp. 760-767, Mar. 2008.
13.
H. Finkelstein, M. J. Hsu and S. C. Esener, "STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology", IEEE Electron Device Lett., vol. 27, no. 11, pp. 887-889, Nov. 2006.
14.
R. M. Field, J. Lary, J. Cohn, L. Paninski and K. L. Shepard, " A low-noise single-photon avalanche diode in standard 0.13~mu m complementary metal-oxide-semiconductor process ", Appl. Phys. Lett., vol. 97, no. 21, pp. 211111, 2010.
15.
T. Leitner et al., "Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology", IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 1982-1988, Jun. 2013.
16.
M. A. Marwick and A. G. Andreou, " Fabrication and testing of single photon avalanche detectors in the TSMC 0.18~mu m CMOS technology ", Proc. 41st Annu. Conf. Inf. Sci. Syst., pp. 741-744, Mar. 2007.
17.
M. Dandin, M. H. U. Habib, B. Nouri, P. Abshire and N. McFarlane, " Characterization of single-photon avalanche diodes in a 0.5- mu m standard CMOS process—Part 2: Equivalent circuit model and geiger mode readout ", IEEE Sensors J., vol. 16, no. 9, pp. 3075-3083, May 2016.
18.
D. Palubiak, M. M. El-Desouki, O. Marinov, M. J. Deen and Q. Fang, "High-speed single-photon avalanche-photodiode imager for biomedical applications", IEEE Sensors J., vol. 11, no. 10, pp. 2401-2412, Oct. 2011.
19.
S. Mandai, M. W. Fishburn, Y. Maruyama and E. Charbon, "A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology", Opt. Exp., vol. 20, no. 6, pp. 5849-5857, 2012.
20.
J. A. Richardson, E. A. G. Webster, L. A. Grant and R. K. Henderson, "Scaleable single-photon avalanche diode structures in nanometer CMOS technology", IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 2028-2035, Jul. 2011.
21.
Z. Xiao, D. Pantic and R. S. Popovic, "A new single photon avalanche diode in CMOS high-voltage technology", Proc. Int. Solid-State Sen. Actuat. Microsyst. Conf. (TRANSDUCERS), pp. 1365-1368, Jun. 2007.
22.
M. A. Karami, M. Gersbach, H.-J. Yoon and E. Charbon, "A new single-photon avalanche diode in 90 nm standard CMOS technology", Opt. Exp., vol. 18, no. 21, pp. 22158-22166, 2010.
23.
L. D. Huang et al., " Single-photon avalanche diodes in 0.18- mu m high-voltage CMOS technology ", Opt. Exp., vol. 25, no. 12, pp. 13333-13339, 2017.
24.
M. Gersbach, C. Niclass, E. Charbon, J. Richardson, R. Henderson and L. Grant, "A single photon detector implemented in a 130 nm CMOS imaging process", Proc. 38th Eur. Solid-State Device Res. Conf. (ESSDERC), pp. 270-273, Sep. 2008.
25.
J. A. Richardson, L. A. Grant and R. K. Henderson, "Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology", IEEE Photon. Technol. Lett., vol. 21, no. 14, pp. 1020-1022, Jul. 2009.
26.
M. W. Fishburn, "Fundamentals of CMOS single-photon avalanche diodes", Feb. 2012.
27.
S. Cova, M. Ghioni, A. Lacaita, C. Samori and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection", Appl. Opt., vol. 35, no. 12, pp. 1956-1976, 1996.
28.
F. Zappa, A. Lotito, A. C. Giudice, S. Cova and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors", IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1298-1301, Jul. 2003.
29.
A. Gallivanoni, I. Rech and M. Ghioni, "Progress in quenching circuits for single photon avalanche diodes", IEEE Trans. Nucl. Sci., vol. 57, no. 6, pp. 3815-3826, Dec. 2010.
30.
E. Webster, J. Richardson, L. Grant and R. Henderson, "An infra-red sensitive low noise single-photon avalanche diode in 90 nm CMOS", Proc. Int. Image Sen. Workshop, pp. 102-105, 2011.
Contact IEEE to Subscribe

References

References is not available for this document.