Feasibility of Folded and Double Dipole Radio Frequency Quadrupole (RFQ) Cavities for Particle Accelerators | IEEE Journals & Magazine | IEEE Xplore

Feasibility of Folded and Double Dipole Radio Frequency Quadrupole (RFQ) Cavities for Particle Accelerators


Abstract:

The quadrupole and dipole modes frequencies can be very close in a long four-vane RFQ as structure length increases. This requires extra mode stabilizer design to improve...Show More

Abstract:

The quadrupole and dipole modes frequencies can be very close in a long four-vane RFQ as structure length increases. This requires extra mode stabilizer design to improve field stability, which may add to system complexity and cost. Therefore, we investigate other four-vane RFQ designs which can have potential advantages and different mode spectrum. These designs are realized by modifying the RFQ cut-back scheme to be a folded-dipole (FD) or a double-dipole (DD) RFQs. In this paper, mode spectrums of these structures are further investigated as function of structure length and dipole mode properties are discussed in detail. Comparison of other properties of the three cut-back methods-FD, DD, and the conventional four cut-backs (4C) - are presented as well. Full 3-D simulations have been carried out for mode analysis of these RFQs with some experimental validation.
Published in: IEEE Transactions on Nuclear Science ( Volume: 61, Issue: 2, April 2014)
Page(s): 799 - 807
Date of Publication: 07 March 2014

ISSN Information:

References is not available for this document.

I. Introduction

The radio frequency quadrupole (RFQ) cavity structures are widely used for focusing, bunching and acceleration of the low-velocity ion particles using RF fields [1], [2]. The 4-vane RFQ cavity structures are commonly used for modern ion accelerators, and usually operate in the 80 to 500 MHz frequency range [3].

Select All
1.
R. M. Hutcheon, L. D. Hansborough, K. J. Hohban and S. O. Schriber, "RFQ linac structure developmentsat CRNL", IEEE Trans. Nucl. Sci., vol. NS-30, no. 4, pp. 3521-3523, Aug. 1983.
2.
I. M. Kapchinskiy and V. A. Tepliakov, Prib. Tekh. Eksp., vol. 2, pp. 19-22, 1970.
3.
J. Staples, “RFQ’s–An introduction”, Sep. 1990.
4.
K. Crandall, R. Stokes and T. Wangler, "RF quadrupole beam dynamics design studies", 10th Linear Accelerator Conf., 1979.
5.
L. Young, "25 years of technical advances in RFQ accelerators", Particle Accelerator Conf., 2003.
6.
L. Young and L. Rybarcyk, "Tuning the LEDA RFQ 6.7 MeV accelerator", Int. Linear Accelerator Conf., 1998.
7.
F. Grespan, A. Pisent and A. Palmieri, "Dipole stabilizers for a four-vanehigh current RFQ", Nucl. Inst. Methods. A., vol. 582, pp. 303-317, 2007.
8.
F. Simoens and A. France, "Tuning procedure of the 5 MeV IPHIRFQ", LINAC, 2002.
9.
A. France, M. Desmons, O. Piquet and C. Rossi, "RF design and tuning of LINAC4 RFQ", Russian Particle Accelerator Conf., 2012.
10.
D. Howard and H. Lancaster, "Vane coupling rings: A simpletechnique for stabilizing a four-vane radiofrequency quadrupole structure", IEEE Trans. Nucl. Sci., vol. NS-30, no. 2, pp. 1446-1448, Apr. 1983.
11.
A. Ueno and Y. Yamazaki, "New field stabilization methodof a four vane type RFQ", Nucl. Inst. Methods, vol. 300, no. 1, pp. 15-24, 1991.
12.
W. Pirkl, “One more RFQ stabilization method”, 1985.
13.
P. Ostroumov, B. Mustapha, A. Barcikowski, C. Dickerson, A. Kolomiets, S. Kondrashev, et al., "Developmentand beam test of a continuous wave radio frequency quadrupole accelerator", Phys. Rev. ST Accel. Beams 15, vol. 15, no. 11, pp. 110101, Nov. 2012.
14.
R. M. Hutcheon, J. C. Brown, L. D. Hansborough, S. O. Schriber and R. B. Turner, "100% duty factor RFQ linacsystems at CRNL", IEEE Trans. Nucl. Sci., vol. NS-30, no. 4, Aug. 1983.
15.
R. M. Hutcheon, "An equivalent circuit modelof the general 3-dimensional RFQ", IEEE Trans. Nuc. Sci., vol. NS-30, no. 4, pp. 3557-3559, Aug. 1983.
16.
A. Pisent, "High power RFQs", IEEE Particle Accelerator Conf., 2009.
17.
CST Studio Suite - Microwave Studio (MWS).
18.
R. Collin, Foundations for Microwave Engineering, USA, NJ, Piscataway:IEEE Press, 1992.
19.
T. Wangler, RF Linear Accelerators, Germany, Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
20.
L. Young, "Tuning and stabilization of RFQ’s", LINAC, 1990.
21.
P. Lapostolle and A. Septier, Linear accelerators, North Holland, Amsterdam:North-Holland Publishing Company, 1970.
22.
“The RFQ design review”, Jan. 1999.
23.
D. Li, J. Staples and S. Virostek, "Detailed modeling of the SNSRFQ structure with CST microwave studio", Proc. Linear Accelerator Conf., 2006.
24.
M. Chen, G. Tsandoulas and F. Willwerth, "Modal characteristics of quadruple-ridgedcircular and square waveguides", IEEE Trans. Microwave Theory Tech., vol. 22, no. 8, pp. 801-804, Aug. 1974.
25.
K. Shin, Y. Kang, S. Kim and A. Fathy, "Investigation of electromagnetic field perturbation withrespect to mechanical imperfections in RFQ structure", IEEE Trans. Nucl. Sci., vol. 59, no. 5, pp. 2428-2434, Oct. 2012.
26.
K. Halbach and R. F. Holsinger, "Superfish–A computerprogram for evaluation of RF cavities with cylindrical symmetry", Particle Accelerators, vol. 7, pp. 213-222, 1976.
27.
D. Li, “The front-end system study of project X”, Mar. 2010.
28.
P. Balleyguier and F. Simoens, "Simulations vs. measurements on IPHI RFQcold model", European Particle Accelerator Conf., 2002.
Contact IEEE to Subscribe

References

References is not available for this document.