Theorem 1
Consider switched system (1) and let 0 < \alpha < 1, \beta \ge 0 and {\gamma _{i}} \ge 0, \forall i \in {\cal I} be given constants. Suppose that there exist positive definite {{\cal C}^{1}} functions {V_{\sigma (k)}}: {{\BBR }^{n}} \to {\BBR }, \sigma (k) \in {\cal I}, with {V_{\sigma ({k_{0}})}}({x_{{k_{0}}}}) \equiv 0 such that \forall (i,j) \in {\cal I} \times {\cal I}, i \ne j, {V_{i}}({x_{{k_{l}}}}) \le \mu {V_{j}}({x_{{k_{l}}}}) and \forall i \in {\cal I}, denoting \Gamma (k) = {y_{k}^{T}}{y_{k}} - {\gamma _{i}^{2}}{u_{k}^{T}}{u_{k}} \Delta {V_{i}}({x_{k}}) \le \cases{{- \alpha {V_{i}}(k) - \Gamma (k),\forall k \in {{\cal T}_{\downarrow} }({k_{l}},{k_{l + 1}})} \cr {\beta {V_{i}}(k) - \Gamma (k),\forall k \in {{\cal T}_{\uparrow} }({k_{l}},{k_{l + 1}})} } .\eqno{\hbox{(3)}}
View Source
\Delta {V_{i}}({x_{k}}) \le \cases{{- \alpha {V_{i}}(k) - \Gamma (k),\forall k \in {{\cal T}_{\downarrow} }({k_{l}},{k_{l + 1}})} \cr {\beta {V_{i}}(k) - \Gamma (k),\forall k \in {{\cal T}_{\uparrow} }({k_{l}},{k_{l + 1}})} } .\eqno{\hbox{(3)}}
Then switched system is GUAS for any switching signal satisfying (2) and has a weighted l _{2}-gain \sum\limits_{s = {k_{0}}}^{\infty} {{{\overline \alpha }^{(s - {k_{0}})}}{y_{s}^{T}}{y_{s}}} < \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{s}^{2}}{u_{s}^{T}}{u_{s}}}\eqno{\hbox{(4)}}
View Source
\sum\limits_{s = {k_{0}}}^{\infty} {{{\overline \alpha }^{(s - {k_{0}})}}{y_{s}^{T}}{y_{s}}} < \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{s}^{2}}{u_{s}^{T}}{u_{s}}}\eqno{\hbox{(4)}}where \overline \alpha = 1 - \alpha, {\gamma _{s}} = {\max _{i \in {\cal I}}}\{\sqrt {{\mu ^{{N_{0}}}}{\theta ^{{{\cal T}_{M}}{N_{0}}}}} {\gamma _{i}}\}, \theta \!\!=\!\! (1 \!+\! \beta)/(1 \!-\!\alpha) and {{\cal T}_{M}} = {\max _{l \in {\BBN}}}{{\cal T}_{\uparrow} }({k_{l + 1}} - {k_{l}}).
Proof
By (3) and choosing the Lyapunov-like function {V_{\sigma (k)}}({x_{k}}), we have that \displaylines{{V_{\sigma (k)}}({x_{k}}) \le {\overline \alpha ^{(k - {k_{l}})}}{\theta ^{{{\cal T}_{\uparrow} }(k - {k_{l}})}}{V_{\sigma (k)}}({x_{{k_{l}}}}) \hfill\cr\hfill- \sum\limits_{s = {k_{l}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}\Gamma (s)}}
View Source
\displaylines{{V_{\sigma (k)}}({x_{k}}) \le {\overline \alpha ^{(k - {k_{l}})}}{\theta ^{{{\cal T}_{\uparrow} }(k - {k_{l}})}}{V_{\sigma (k)}}({x_{{k_{l}}}}) \hfill\cr\hfill- \sum\limits_{s = {k_{l}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}\Gamma (s)}}where \overline \alpha = 1 - \alpha and \theta = {{(1 + \beta)} / {\overline \alpha}}. Then, by similar guidelines of [3, Theorem 5], we get \displaylines{\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{{N_{\sigma} }(s,k)}}{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}{y_{s}^{T}}{y_{s}}} \hfill\cr \hfill \le \sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{{N_{\sigma} }(s,k)}}{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} .\quad{\hbox{(5)}}}
View Source
\displaylines{\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{{N_{\sigma} }(s,k)}}{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}{y_{s}^{T}}{y_{s}}} \hfill\cr \hfill \le \sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{{N_{\sigma} }(s,k)}}{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} .\quad{\hbox{(5)}}}
Multiplying both sides of (5) by {\mu ^{- {N_\sigma }({k_0},k)}}{\theta ^{- {{\cal T}_ \uparrow }(k - {k_0} - 1)}} and further following the guidelines in [3], one has \displaylines{\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{- {N_{\sigma} }({k_{0}},s)}}{\theta ^{- {{\cal T}_{M}}{N_{\sigma} }({k_{0}},s)}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} \le \sum\limits_{s = {k_{0}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} .\hfill\cr\hfill{\hbox{(6)}}}
View Source
\displaylines{\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{- {N_{\sigma} }({k_{0}},s)}}{\theta ^{- {{\cal T}_{M}}{N_{\sigma} }({k_{0}},s)}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} \le \sum\limits_{s = {k_{0}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} .\hfill\cr\hfill{\hbox{(6)}}}
By definition of ADT, we see \displaylines{{\mu ^{- {N_{\sigma} }({k_{0}},s)}}{\theta ^{- {{\cal T}_{M}}{N_{\sigma} }({k_{0}},s)}} \hfill\cr\hfill > {\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})}/ {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})}/ {{\tau _{a}}}}}} .}
View Source
\displaylines{{\mu ^{- {N_{\sigma} }({k_{0}},s)}}{\theta ^{- {{\cal T}_{M}}{N_{\sigma} }({k_{0}},s)}} \hfill\cr\hfill > {\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})}/ {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})}/ {{\tau _{a}}}}}} .}
Then, we have the equation shown at the top of the page. \eqalignno{\sum\limits_{k = {k_{0}}}^{\infty}& {\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} } \cr <&\, \sum\limits_{k = {k_{0}}}^{\infty} {\sum\limits_{s = {k_{0}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {\sum\limits_{k = s}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} } \cr <&\, \sum\limits_{s = {k_{0}}}^{\infty} {\sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- s(s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{y_{s}^{T}}{y_{s}} \sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}} } \cr <&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}} \sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} /{{\tau _{a}}}}}}{y_{s}^{T}}{y_{s}}} < \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} }
View Source
\eqalignno{\sum\limits_{k = {k_{0}}}^{\infty}& {\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} } \cr <&\, \sum\limits_{k = {k_{0}}}^{\infty} {\sum\limits_{s = {k_{0}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {\sum\limits_{k = s}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} } \cr <&\, \sum\limits_{s = {k_{0}}}^{\infty} {\sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- s(s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{y_{s}^{T}}{y_{s}} \sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}} } \cr <&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}} \sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} /{{\tau _{a}}}}}}{y_{s}^{T}}{y_{s}}} < \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} }
Thus, by the ADT Condition (2) which implies {\mu ^{{{- (s - {k_{0}})} /{{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})}/{{\tau _{a}}}}}} > {\overline \alpha ^{(s - {k_{0}})}}, the weighted l _{2}-gain performance (4) can be obtained. \hfill\square
By commonly choosing chatter bound {N_{0}} = 0, Theorem 1 turns into following corollary usually related to synchronous switching, which is exactly reduced to the results presented in [3]–[7].
Corollary 1
Consider switched system (1) and let 0 < \alpha < 1 and {\gamma _{i}} \ge 0, \forall i \in {\cal I} be given constants. Suppose that there exist positive definite {{\cal C}^{1}} functions {V_{\sigma (k)}}: {{\BBR }^{n}} \to {\BBR }, \sigma (k) \in {\cal I}, with {V_{\sigma ({k_{0}})}}({x_{{k_{0}}}}) \equiv 0 such that \forall (i,j) \in {\cal I} \times {\cal I}, i \ne j, {V_{i}}({x_{{k_{l}}}}) \le \mu {V_{j}}({x_{{k_{l}}}}) and \forall i \in {\cal I}, denoting \Gamma (k) = {y_{k}^{T}}{y_{k}} - {\gamma _{i}^{2}}{u_{k}^{T}}{u_{k}}, \Delta {V_{i}}({x_{k}}) \le - \alpha {V_{i}}(k) - \Gamma (k). Then switched system is GUAS for any switching signal satisfying (7) and has a weighted l _{2}-gain \sum_{s = {k_{0}}}^{\infty} {{{\overline \alpha }^{(s - {k_{0}})}}{y_{s}^{T}}{y_{s}}} < \sum_{s = {k_{0}}}^{\infty} {{\gamma _{s}^{2}}{u_{s}^{T}}{u_{s}}}, where \overline \alpha = 1 - \alpha and {\gamma _{s}} = {\max _{i \in {\cal I}}}\{{\gamma _{i}}\}.
Since the results of [1] in H _{\infty } control problem were primarily based on the incorrect Theorem 2, the Theorem 3 for bounded real lemma and Theorem 4 for H _{\infty } controller design should also be corrected by replacing the l _{2}-gain with weighted l _{2}-gain performance.