Theorem 1
Consider switched system (1) and let $0 < \alpha < 1$, $\beta \ge 0$ and ${\gamma _{i}} \ge 0$, $\forall i \in {\cal I}$ be given constants. Suppose that there exist positive definite ${{\cal C}^{1}}$ functions ${V_{\sigma (k)}}$: ${{\BBR }^{n}} \to {\BBR }$, $\sigma (k) \in {\cal I}$, with ${V_{\sigma ({k_{0}})}}({x_{{k_{0}}}}) \equiv 0$ such that $\forall (i,j) \in {\cal I} \times {\cal I}$, $i \ne j$, ${V_{i}}({x_{{k_{l}}}}) \le \mu {V_{j}}({x_{{k_{l}}}})$ and $\forall i \in {\cal I}$, denoting $\Gamma (k) = {y_{k}^{T}}{y_{k}} - {\gamma _{i}^{2}}{u_{k}^{T}}{u_{k}}$ $$\Delta {V_{i}}({x_{k}}) \le \cases{{- \alpha {V_{i}}(k) - \Gamma (k),\forall k \in {{\cal T}_{\downarrow} }({k_{l}},{k_{l + 1}})} \cr {\beta {V_{i}}(k) - \Gamma (k),\forall k \in {{\cal T}_{\uparrow} }({k_{l}},{k_{l + 1}})} } .\eqno{\hbox{(3)}}$$View Source
\Delta {V_{i}}({x_{k}}) \le \cases{{- \alpha {V_{i}}(k) - \Gamma (k),\forall k \in {{\cal T}_{\downarrow} }({k_{l}},{k_{l + 1}})} \cr {\beta {V_{i}}(k) - \Gamma (k),\forall k \in {{\cal T}_{\uparrow} }({k_{l}},{k_{l + 1}})} } .\eqno{\hbox{(3)}}
Then switched system is GUAS for any switching signal satisfying (2) and has a weighted $l _{2}$-gain $$\sum\limits_{s = {k_{0}}}^{\infty} {{{\overline \alpha }^{(s - {k_{0}})}}{y_{s}^{T}}{y_{s}}} < \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{s}^{2}}{u_{s}^{T}}{u_{s}}}\eqno{\hbox{(4)}}$$View Source
\sum\limits_{s = {k_{0}}}^{\infty} {{{\overline \alpha }^{(s - {k_{0}})}}{y_{s}^{T}}{y_{s}}} < \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{s}^{2}}{u_{s}^{T}}{u_{s}}}\eqno{\hbox{(4)}}where $\overline \alpha = 1 - \alpha$, ${\gamma _{s}} = {\max _{i \in {\cal I}}}\{\sqrt {{\mu ^{{N_{0}}}}{\theta ^{{{\cal T}_{M}}{N_{0}}}}} {\gamma _{i}}\}, \theta \!\!=\!\! (1 \!+\! \beta)/(1 \!-\!\alpha)$ and ${{\cal T}_{M}} = {\max _{l \in {\BBN}}}{{\cal T}_{\uparrow} }({k_{l + 1}} - {k_{l}})$.
Proof
By (3) and choosing the Lyapunov-like function ${V_{\sigma (k)}}({x_{k}})$, we have that $$\displaylines{{V_{\sigma (k)}}({x_{k}}) \le {\overline \alpha ^{(k - {k_{l}})}}{\theta ^{{{\cal T}_{\uparrow} }(k - {k_{l}})}}{V_{\sigma (k)}}({x_{{k_{l}}}}) \hfill\cr\hfill- \sum\limits_{s = {k_{l}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}\Gamma (s)}}$$View Source
\displaylines{{V_{\sigma (k)}}({x_{k}}) \le {\overline \alpha ^{(k - {k_{l}})}}{\theta ^{{{\cal T}_{\uparrow} }(k - {k_{l}})}}{V_{\sigma (k)}}({x_{{k_{l}}}}) \hfill\cr\hfill- \sum\limits_{s = {k_{l}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}\Gamma (s)}}where $\overline \alpha = 1 - \alpha$ and $\theta = {{(1 + \beta)} / {\overline \alpha}}$. Then, by similar guidelines of [3, Theorem 5], we get $$\displaylines{\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{{N_{\sigma} }(s,k)}}{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}{y_{s}^{T}}{y_{s}}} \hfill\cr \hfill \le \sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{{N_{\sigma} }(s,k)}}{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} .\quad{\hbox{(5)}}}$$View Source
\displaylines{\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{{N_{\sigma} }(s,k)}}{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}{y_{s}^{T}}{y_{s}}} \hfill\cr \hfill \le \sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{{N_{\sigma} }(s,k)}}{{\overline \alpha }^{k - s - 1}}{\theta ^{{{\cal T}_{\uparrow} }(k - s - 1)}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} .\quad{\hbox{(5)}}}
Multiplying both sides of (5) by ${\mu ^{- {N_\sigma }({k_0},k)}}{\theta ^{- {{\cal T}_ \uparrow }(k - {k_0} - 1)}}$ and further following the guidelines in [3], one has $$\displaylines{\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{- {N_{\sigma} }({k_{0}},s)}}{\theta ^{- {{\cal T}_{M}}{N_{\sigma} }({k_{0}},s)}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} \le \sum\limits_{s = {k_{0}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} .\hfill\cr\hfill{\hbox{(6)}}}$$View Source
\displaylines{\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{- {N_{\sigma} }({k_{0}},s)}}{\theta ^{- {{\cal T}_{M}}{N_{\sigma} }({k_{0}},s)}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} \le \sum\limits_{s = {k_{0}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} .\hfill\cr\hfill{\hbox{(6)}}}
By definition of ADT, we see $$\displaylines{{\mu ^{- {N_{\sigma} }({k_{0}},s)}}{\theta ^{- {{\cal T}_{M}}{N_{\sigma} }({k_{0}},s)}} \hfill\cr\hfill > {\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})}/ {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})}/ {{\tau _{a}}}}}} .}$$View Source
\displaylines{{\mu ^{- {N_{\sigma} }({k_{0}},s)}}{\theta ^{- {{\cal T}_{M}}{N_{\sigma} }({k_{0}},s)}} \hfill\cr\hfill > {\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})}/ {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})}/ {{\tau _{a}}}}}} .}
Then, we have the equation shown at the top of the page. $$\eqalignno{\sum\limits_{k = {k_{0}}}^{\infty}& {\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} } \cr <&\, \sum\limits_{k = {k_{0}}}^{\infty} {\sum\limits_{s = {k_{0}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {\sum\limits_{k = s}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} } \cr <&\, \sum\limits_{s = {k_{0}}}^{\infty} {\sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- s(s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{y_{s}^{T}}{y_{s}} \sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}} } \cr <&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}} \sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} /{{\tau _{a}}}}}}{y_{s}^{T}}{y_{s}}} < \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} }$$View Source
\eqalignno{\sum\limits_{k = {k_{0}}}^{\infty}& {\sum\limits_{s = {k_{0}}}^{k - 1} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} } \cr <&\, \sum\limits_{k = {k_{0}}}^{\infty} {\sum\limits_{s = {k_{0}}}^{k - 1} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {\sum\limits_{k = s}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{{\overline \alpha }^{k - s - 1}}{y_{s}^{T}}{y_{s}}} } \cr <&\, \sum\limits_{s = {k_{0}}}^{\infty} {\sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- s(s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} / {{\tau _{a}}}}}}{y_{s}^{T}}{y_{s}} \sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}} } \cr <&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}} \sum\limits_{k = s}^{\infty} {{{\overline \alpha }^{k - s - 1}}} } \cr \Rightarrow&\, \sum\limits_{s = {k_{0}}}^{\infty} {{\mu ^{- {N_{0}}}}{\theta ^{- {{\cal T}_{M}}{N_{0}}}}{\mu ^{{{- (s - {k_{0}})} / {{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})} /{{\tau _{a}}}}}}{y_{s}^{T}}{y_{s}}} < \sum\limits_{s = {k_{0}}}^{\infty} {{\gamma _{\sigma (s)}^{2}}{u_{s}^{T}}{u_{s}}} }
Thus, by the ADT Condition (2) which implies ${\mu ^{{{- (s - {k_{0}})} /{{\tau _{a}}}}}}{\theta ^{{{- {{\cal T}_{M}}(s - {k_{0}})}/{{\tau _{a}}}}}} > {\overline \alpha ^{(s - {k_{0}})}}$, the weighted $l _{2}$-gain performance (4) can be obtained. $\hfill\square$
By commonly choosing chatter bound ${N_{0}} = 0$, Theorem 1 turns into following corollary usually related to synchronous switching, which is exactly reduced to the results presented in [3]–[7].
Corollary 1
Consider switched system (1) and let $0 < \alpha < 1$ and ${\gamma _{i}} \ge 0$, $\forall i \in {\cal I}$ be given constants. Suppose that there exist positive definite ${{\cal C}^{1}}$ functions ${V_{\sigma (k)}}$: ${{\BBR }^{n}} \to {\BBR }$, $\sigma (k) \in {\cal I}$, with ${V_{\sigma ({k_{0}})}}({x_{{k_{0}}}}) \equiv 0$ such that $\forall (i,j) \in {\cal I} \times {\cal I}$, $i \ne j$, ${V_{i}}({x_{{k_{l}}}}) \le \mu {V_{j}}({x_{{k_{l}}}})$ and $\forall i \in {\cal I}$, denoting $\Gamma (k) = {y_{k}^{T}}{y_{k}} - {\gamma _{i}^{2}}{u_{k}^{T}}{u_{k}}$, $\Delta {V_{i}}({x_{k}}) \le - \alpha {V_{i}}(k) - \Gamma (k)$. Then switched system is GUAS for any switching signal satisfying (7) and has a weighted $l _{2}$-gain $\sum_{s = {k_{0}}}^{\infty} {{{\overline \alpha }^{(s - {k_{0}})}}{y_{s}^{T}}{y_{s}}} < \sum_{s = {k_{0}}}^{\infty} {{\gamma _{s}^{2}}{u_{s}^{T}}{u_{s}}}$, where $\overline \alpha = 1 - \alpha$ and ${\gamma _{s}} = {\max _{i \in {\cal I}}}\{{\gamma _{i}}\}$.
Since the results of [1] in $H _{\infty }$ control problem were primarily based on the incorrect Theorem 2, the Theorem 3 for bounded real lemma and Theorem 4 for $H _{\infty }$ controller design should also be corrected by replacing the $l _{2}$-gain with weighted $l _{2}$-gain performance.