Abstract:
A spherical single lens imaging system for cellphone camera is proposed in this research. The overall thickness from the front surface of the lens to the image sensor is ...Show MoreMetadata
Abstract:
A spherical single lens imaging system for cellphone camera is proposed in this research. The overall thickness from the front surface of the lens to the image sensor is approximately 4.5 mm, which is competitive compared to 6~7 mm of current cellphone camera modules that use compound lens system. One defect of this spherical single lens that deteriorates image quality is radially variant blur, which is produced by one of the optical aberrations called field curvature. We describe a novel method of blur restoration that employs polar image and polar Point Spread Function (PSF) converted from Cartesian image and Cartesian PSF. The blurred image was radially segmented into several regions, to which polar PSFs at different field angles were applied. Results of visual and quantitative evaluation indicate that number of segmented regions and weighted average of \beta / n ratios, i.e., ratio of bandwidth to the number Circulant Blocks (CBs) of the polar PSF Block-Toeplitz-with-Circulant-Blocks (BTCB) matrices affect the restored image quality and Mean Square Error (MSE). Evaluation results on restored images using different polar image resolutions revealed that high resolution obtains good pixel continuity, whereas low resolution results in radially expanding pixel vacancies.
Published in: IEEE Sensors Journal ( Volume: 11, Issue: 11, November 2011)
References is not available for this document.
Select All
1.
K. Tatsuno, "Current trends in digital camerasand camera-phones", Sci. Tech. Trends-Quarterly Rev., no. 18, pp. 35-44, Jan. 2006.
2.
S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lensfor miniature cameras", Appl. Phys. Lett., vol. 85, pp. 1128-1130, 2004.
3.
B. Y. Song, D. S. Nam, J. G. Kim, J. S. Park, J. Y. Lee, K. S. Shin, et al., "Auto-focusing actuator and camera moduleincluding flexible diaphragm for mobile phone camera and wireless capsuleendoscope", Microsyst. Technol., vol. 16, pp. 149-159, 2010.
4.
Y. Zhang and T. Ueda, "Field-dependent distortion coefficient andbackward mapping for distortion correction of singlet lens cameras", IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 2, pp. 203-210, Mar. 2010.
5.
Y. Zhang and T. Ueda, "Design of a singlet lens and the correspondingaberration correction approaches for cell phone camera", IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 4, pp. 474-485, Jul. 2010.
6.
H. C. Andrews and B. R. Hunt, Digital image restoration, NJ, Englewood Cliffs:Prentice-Hall, 1977.
7.
R. H. Chan, J. G. Nagy and R. J. Plemmons, "FFT-based preconditioners forToeplitz-block least-squares problems", SIAM J. Numer. Anal., vol. 30, no. 6, pp. 1740-1768, Dec. 1993.
8.
S. Rathee and Z. J. Koles, "Image restoration in computedtomography: Restoration of experimental CT images", IEEE Trans. Med. Imaging, vol. 11, no. 4, pp. 546-553, Dec. 1992.
9.
A. K. Katsaggelos, J. Biemond, R. W. Schafer and R. M. Mersereau, "A regularized iterative imagerestoration algorithm", IEEE Trans. Signal Process., vol. 39, no. 4, pp. 914-929, Apr. 1991.
10.
J. G. Nagy, R. J. Plemmons and T. C. Torgersen, "Iterative image restorationusing approximate inverse preconditioning", IEEE Trans. Image Process., vol. 5, no. 7, pp. 1151-1162, Jul. 1996.
11.
M. I. Sezan and A. M. Tekalp, "Survey of recent developmentsin digital image restoration", Opt. Eng., vol. 29, pp. 393-404, 1990.
12.
W. H. Richardson, "Bayesian-based iterative methodof image restoration", J. Opt. Soc. Amer., vol. 62, pp. 55-59, 1972.
13.
A. K. Katsaggelos and K. T. Lay, "Maximum likelihood blur identificationand image restoration using the EM algorithm", IEEE Trans. Signal Process., vol. 39, no. 3, pp. 729-733, Mar. 1991.
14.
D. Kundur and D. Hatzinakos, "Blind image deconvolution revisited", IEEE Signal Process. Mag., vol. 13, no. 6, pp. 61-63, Nov. 1996.
15.
G. R. Ayers and J. C. Dainty, "Iterative blind deconvolutionmethod and its applications", Opt. Lett., vol. 13, no. 7, pp. 547-549, Jul. 1988.
16.
J. N. Caron, N. M. Namazi and C. J. Rollins, "Noniterative blind data restorationby use of an extracted filter function", Appl. Opt., vol. 41, no. 32, pp. 6884-6889, 2002.
17.
A. D. Hillery and R. T. Chin, "Iterative wiener filters forimage restoration", IEEE Trans. Signal Process., vol. 39, no. 8, pp. 1892-1899, Aug. 1991.
18.
J. Liu, H. Yan, J. Sun and D. Li, "Super-resolutionimage restoration by combing incremental wiener filter and space-adaptiveregularization", Proc. 2003 Int. Conf. Neural Netw. Signal Process., pp. 998-1001, 2003-Dec.
19.
C. Wang, L. Sun, Z. Chen, J. Zhang and S. Yang, "Multi-scaleblind motion deblurring using local minimum", Inverse Problems, vol. 26, no. 1, pp. 1-17, 2010.
20.
J. F. Aujol, "Some first-order algorithmsfor total variation based image restoration", J. Math. Imaging Vis., vol. 34, no. 3, pp. 307-327, 2009.
21.
A. Rav-Acha and S. Peleg, "Restoration of multiple images with motionblur in different directions", Proc. 5th IEEE Workshop on Appl. Comput. Vision, pp. 22-28, 2000.
22.
T. F. Chan, "Circulant preconditioners forToeplitz-block matrices", Numerical Algorithms, vol. 6, no. 1, pp. 89-101, 1994.
23.
M. Hanke and J. G. Nagy, "Toeplitz approximate inversepreconditioner for banded Toeplitz matrices", Numerical Algorithms, vol. 7, no. 2, pp. 183-199, 1994.
24.
R. H. Chan and M. K. Ng, "Conjugate gradient methods for Toeplitzsystems", SIAM Rev., vol. 38, no. 3, pp. 427-482, Sep. 1996.
25.
D. A. Fish, J. Grochmalicki and E. R. Pike, "Scanning singular-value-decompositionmethod for restoration of images with space-variant blur", J. Opt. Soc. Amer. A, vol. 13, no. 3, pp. 464-469, 1996.
26.
M. Welk, D. Theis and J. Weickert, "Variational deblurring of images with uncertainand spatially variant blurs", Pattern Recognition Lecture Notes in Computer Science, vol. 3663, pp. 485-492, 2005.
27.
Y. Zhang, I. Minema and T. Ueda, "Restoration of radially blurred image createdby spherical single lens system of cellular phone camera", Proc. IEEE Sens. Conf, pp. 1333-1337, 2010-Nov.-14.
28.
Y. Zhang and T. Ueda, "Deblur of radially variant blurred imagefor single lens system", IEEJ Trans. Electr. Electron. Eng., vol. 6, no. S1, pp. S7-S16, 2011.
29.
S. J. Reeves, "Fast image restoration withoutboundary artifacts", IEEE Trans. Image Process., vol. 14, no. 10, pp. 1448-1453, Oct. 2005.
30.
K. Kim and I. Park, "Combined image signal processing for CMOSimage sensors", Proc. IEEE Int. Symp. Circuit and Syst. ISCAS06, pp. 3185-3188, 2006.