Abstract:
All-optical switching performance of waveguide-type device utilizing intersubband transition is investigated by analyzing the position-dependent change of optical power d...Show MoreMetadata
Abstract:
All-optical switching performance of waveguide-type device utilizing intersubband transition is investigated by analyzing the position-dependent change of optical power densities and carrier densities in the waveguide. In the device, the three lowest energy-level subbands in the conduction band structure of asymmetric coupled quantum wells are used. The optical excitation pulse excites the electrons in the first subband to the third subband and the stimulated emission between the third subband and second subband amplifies the optical signal pulse. We find that the signal pulse is notably amplified when the excitation pulsewidth is less than the relaxation time of the third subband. The calculated results show that wavelength conversion from 1.35 to 1.6 /spl mu/m with a gain of more than 10 dB is achieved by the excitation using an optical pulse with 1.5-ps width. This demonstrates the effectiveness of using a waveguide-type device structure with pulsed operation to make devices with a high-optical gain. We also derive a simple approximation for the optical gain. We show that the approximation gives results in good agreement with the results of the rigorous simulation using a finite difference method and the approximation is useful for designing devices.
Published in: IEEE Journal of Selected Topics in Quantum Electronics ( Volume: 2, Issue: 2, June 1996)
DOI: 10.1109/2944.577403
References is not available for this document.
Select All
2.
D. Y. Oberli, D. R. Wake, M. V. Klein, J. Klem, T. Henderson and H. Morkoc, "Time-resolved Raman scattering in GaAs quantum wells", Phys. Rev. Lett., vol. 59, pp. 696-699, 1987.
3.
R. Ferreira and G. Bastard, "Evaluation of some scattering times for electron in unbiased and biased single- and multiple-quantum-well structures", Phy. Rev. B, vol. 40, pp. 1074-1086, 1989.
4.
R. F. Kazarinov and R. A. Suris, "Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice", Sov. Phys. Semiconduct., vol. 5, pp. 707-709, 1971.
5.
F. Capasso, K. Mohammed and A. Y. Cho, "Resonant tunneling through double barriers perpendicular quantum transport phenomena in superlattices and their device applications", IEEE J. Quantum Electron., vol. QE-22, pp. 1853-1869, 1986.
6.
M. Helm, E. Colas, P. England, F. DeRosa and S. J. Allen Jr., "Observation of grating-induced intersubband emission from GaAs/AlGaAs superlattices", Appl. Phys. Lett., vol. 53, pp. 1714-1716, 1988.
7.
P. Yuh and K. L. Wang, "Novel infrared band-aligned superlattice laser", Appl. Phys. Lett., vol. 51, pp. 1404-1406, 1987.
8.
Q. Hu and S. Feng, "Feasibility of far-infrared lasers using multiple semiconductor quantum wells", Appl. Phys. Lett., vol. 59, pp. 2923-2925, 1991.
9.
J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutcinson and A. Y. Cho, "Room temperature mid-infrared quantum cascade lasers", Electron. Lett., vol. 32, pp. 560-561, 1996.
10.
K. M. Lau and W. Xu, "Optically pumped submillimeter wave semiconductor lasers", IEEE J. Quantum Electron., vol. 28, pp. 1773-1777, 1992.
11.
G. San and J. B. Khurigin, "Optically pumped four-level infrared lasers based on intersubband transition in multiple quantum wells: Feasibility study", IEEE J. Quantum Electron., vol. 29, pp. 1104-1111, 1993.
12.
V. Berger, "Three-level lasers based on intersubband transitions in asymmetric quantum wells: A theoretical study", Semiconduct. Sci. Technol., vol. 9, pp. 1493-1499, 1994.
13.
A. Afzali-Kushaa, G. I. Haddad and T. B. Norris, "Optically pumped Intersubband lasers based on quantum wells", IEEE J. Quantum Electron., vol. 31, pp. 135-143, 1995.
14.
F. H. Julien, A. Saa`r, J. Wang and J. P. Leburton, "Optically pumped intersub-band emission in quantum wells", Electron. Lett., vol. 31, pp. 838-839, 1995.
15.
Z. Moussa, P. Boucaud, F. H. Julien, Y. Lavon, A. Saa`r, V. Berger, et al., "Observation of infrared intersubband emission in optically pumped quantum wells", Electron. Lett., vol. 31, pp. 912-913, 1995.
16.
C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu and A. Y. Cho, " Observation of large second order susceptibility via intersubband transitions at \$lambda cong 10\$ \$mu\$ m in asymmetric coupled AlInAs/GaInAs quantum wells ", Appl. Phys. Lett., vol. 59, pp. 2302-2304, 1991.
17.
M. K. Gurnick and T. A. Detemple, "Synthetic nonlinear semiconductors", IEEE J. Quantum Electron., vol. QE-19, pp. 791-793, 1983.
18.
P. F. Yuh and K. L. Wang, "Optical transitions in a step quantum well", J. Appl. Phys., vol. 65, pp. 4377-4381, 1989.
19.
H. Asai and Y. Kawamura, " 2.4 \$mu\$ m intersubband absorption in In \$_{1-x}\$ Ga \$_x\$ As/AlAs \$_{1-y}\$ Sb \$_y\$ multiple quantum wells ", Proc. Int. Conf. Indium Phosphide and Related Materials, pp. 493-496, 1992.
20.
J. L. Educato, J.-P. Leburton, P. Boucaud, P. Vagos and F. H. Julien, "Influence of interface phonons on intersubband scattering in asymmetric coupled quantum wells", Phy. Rev. B, vol. 47, pp. 12949-12952, 1993.
21.
O. K. Kim and W. A. Bonner, " Infrared reflectance and absorption of \$n\$ -type InP ", J. Electron. Mater., vol. 12, pp. 827-836, 1983.
22.
M. Erman, P. Jarry, R. Gamonal, J.-L. Gentner, P. Stephan and C. Guedon, "Monolithic integration of a GaInAs p-i-n photodiode and an optical waveguide: Modeling and realization using chrolide vapor phase epitaxy", J. Lightwave Technol., vol. 6, pp. 399-411, 1988.
23.
K. Kasaya, T. Takeuchi and K. Oe, "The relation between propagation loss and phase modulation efficiency of InGaAsP/InP miniature optical waveguide", 1989 Annu. Nat. Conv. Rec., pp. 4-200, Sept. 1989.
24.
N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi and K. E. Stubkjaer, " Measurement of carrier lifetime and linewidth enhancement factor for 1.5- \$mu\$ m ridge-waveguide laser amplifier ", IEEE Photon. Technol. Lett., vol. 3, pp. 632-634, 1991.
25.
T. Kataoka, Y. Miyamoto, K. Hagimoto, K. Sato, I. Kotaka and K. Wakita, "20 Gb/s transmission experiments using an integrated MQW modulator/DFB laser module", Electron. Lett., vol. 30, pp. 872-873, 1994.
26.
Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto and N. Yokoyama, "All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation", Appl. Phys. Lett., vol. 66, pp. 839-841, 1995.
27.
R. Takahashi, Y. Kawamura and H. Iwamura, " Ultrafast 1.55 \$mu\$ m all-optical switching using low-temperature-grown multiple quantum wells ", Appl. Phys. Lett., vol. 68, pp. 153-155, 1996.
28.
S. Nakamura, K. Tajima and Y. Sugimoto, "Experimental investigation on high-speed switching characteristics of a novel symmetric Mach-Zehnder all-optical switch", Appl. Phys. Lett., vol. 65, pp. 283-285, 1994.
29.
J. M. Wiesenfeld, B. Glance, J. S. Perino and A. H. Gnauck, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier", IEEE Photon. Technol. Lett., vol. 5, pp. 1300-1303, 1993.
30.
J. M. Wiesenfeld, J. S. Perino, A. H. Gnauck and B. Glance, "Bit error rate performance for wavelength conversion at 20 Gbit/s", Electron. Lett., vol. 30, pp. 720-721, 1994.