Loading [MathJax]/extensions/MathMenu.js
InP Photonic Integrated Circuits | IEEE Journals & Magazine | IEEE Xplore

Abstract:

InP is an ideal integration platform for optical generation, switching, and detection components operating in the range of 1.3-1.6 m wavelength, which is preferred for da...Show More

Abstract:

InP is an ideal integration platform for optical generation, switching, and detection components operating in the range of 1.3-1.6 m wavelength, which is preferred for data transmission in the most prevalent silica-based optical fiber. We review the current state of the art in advanced InP photonic ICs.
Published in: IEEE Journal of Selected Topics in Quantum Electronics ( Volume: 16, Issue: 5, Sept.-Oct. 2010)
Page(s): 1113 - 1125
Date of Publication: 26 January 2010

ISSN Information:

References is not available for this document.

I. Introduction

Photonic integration has a very rich and active research history dating back to the late 1960s [1]. This area of development that started with the integration of a handful of devices saw the first commercial deployment of large-scale photonic ICs (LS-PICs), with over 50 discrete components monolithically integrated onto to a single InP substrate, only five years ago. Experimentally, monolithically integrated devices on InP with well over 200 components have been demonstrated to date.

Select All
1.
R. Nagarajan and M. Smit, "Photonic integration", IEEE LEOS Newslett., vol. 21, no. 3, pp. 4-10, Jun. 2007.
2.
S. E. Miller, "Integrated optics: An introduction", Bell Sys. Tech. J., vol. 48, pp. 2059-2069, Sep. 1969.
3.
I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, "Junction lasers which operate continuously at room temperature", Appl. Phys. Lett., vol. 17, pp. 109-111, Aug. 1970.
4.
J. Shibata, I. Nakao, Y. Sasai, S. Kimura, N. Hase and H. Serizawa, "Monolithic integration of an InGaAsP/InP laser diode with heterojunction bipolar transistors", Appl. Phys. Lett., vol. 45, pp. 191-193, Aug. 1984.
5.
O. Wada, T. Sakurai and T. Nakagami, "Recent progress in optoelectronic integrated circuits (OEICs)", IEEE J. Quantum Electron., vol. QE-22, no. 6, pp. 805-821, Jun. 1986.
6.
T. L. Koch and U. Koren, "Semiconductor photonic integrated circuits", IEEE J. Quantum Electron., vol. QE-27, no. 3, pp. 641-653, Mar. 1991.
7.
M. Zirngibl, C. H. Joyner and L. W. Stultz, "WDM receiver by monolithic integration of an optical preamplifier waveguide grating router and photodiode array", Electron Lett., vol. 31, pp. 581-582, Mar. 1995.
8.
C. A. M. Steenbergen, C. Van Dam, A. Looijen, C. G. P. Herben, M. De Kok, M. K. Smit, et al., " Compact low loss 8 \$times\$ 10 GHz polarisation independent WDM receiver ", in Proc. Eur. Conf. Opt. Commun., 1996, vol. 1, pp. 129132-Sep.
9.
C. G. P. Herben, D. H. P. Maat, X. J. M. Leijtens, M. R. Leys, Y. S. Oei and M. K. Smit, "Polarization independent dilated WDM cross-connect on InP", Photon. Technol. Lett., vol. 11, pp. 1599-1601, Dec. 1999.
10.
L. A. Coldren, "Monolithic tunable diode lasers", J. Sel. Topics Quantum Electron., vol. 6, pp. 988-999, Nov. 2000.
11.
Y. Yoshikuni, "Semiconductor arrayed waveguide gratings for photonic integrated devices", J. Sel. Topics Quantum Electron., vol. 8, pp. 1102-1114, Dec. 2002.
12.
N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, et al., "Monolithically integrated 64-channel WDM channel selector on InP substrate", Proc. Eur. Conf. Opt Commun., pp. 4-5, Sep. 2001, vol. 1.
13.
Y. Suzaki, K. Asaka, Y. Kawaguchi, S. Oku, Y. Noguchi, S. Kondo, et al., "Multi-channel modulation in a DWDM monolithic photonic integrated circuit", Proc. Int. Conf. Indium Phosphide Related Mater., pp. 681-683, May 2002.
14.
M. L. Maanovi, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren and D. J. Blumenthal, "Monolithically integrated Mach-Zehnder interferometer wavelength converter and widely tunable laser in InP", Photon. Technol. Lett., vol. 15, pp. 1117-1119, Aug. 2003.
15.
V. I. Tolstikhin, A. Densmore, Y. Logvin, K. Pimenov, F. Wu and S. Laframboise, "44-channel optical power monitor based on an echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate", Opt. Fiber Commun. Conf., 2003-Mar.
16.
17.
R. Nagarajan, C. Joyner, R. Schneider, Jr., J. Bostak, T. Butrie, A. Dentai, et al., "Large-scale photonic integrated circuits", IEEE J. Sel. Top. Quantum Electron., vol. 11, no. 1, pp. 50-65, Jan./Feb. 2005.
18.
R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, et al., "Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s", Electron. Lett., vol. 42, no. 13, pp. 771-773, May 2006.
19.
M. Kato, R. Nagarajan, J. Pleumeekers, P. Evans, A. Chen, A. Mathur, et al., "40-channel transmitter and receiver photonic integrated circuits operating at per channel data rate 12.5 Gbit/s", Electron. Lett., vol. 43, no. 8, pp. 468-469, Apr. 2007.
20.
R. Nagarajan, M. Kato, S. Hurtt, A. Dentai, J. Pleumeekers, P. Evans, et al., "Monolithic 10 and 40 channel InP receiver photonic integrated circuits with on-chip amplification", Opt. Fiber Commun. Conf., 2007-Mar.
21.
S. C. Nicholes, M. L. Maanovi, B. Jevremovi, E. Lively, L. A. Coldren and D. J. Blumenthal, " The worlds first InP 8 \$times\$ 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port ", Opt. Fiber Commun. Conf., 2009-Mar.
22.
C. Joyner, J. Pleumeekers, A. Mathur, P. Evans, D. Lambert, S. Murthy, et al., "Large-scale DWDM photonic integrated circuits: A manufacturable and scalable integration platform", LEOS Annu. Meeting, 2005-Oct.
23.
F. Kish, D. Welch, J. Pleumeekers, A. Mathur, P. Evans, R. Muthiah, et al., "Volume manufacturing and deployment of large-scale photonic integrated circuits", Opt. Fiber Commun. Conf. (OFC), 2006, Paper OWL1-Mar.
24.
D. Welch, C. Joyner, D. Lambert, P. Evans and M. Raburn, "III-V photonic integrated circuits and their impact on optical network architectures" in Optical Fiber Telecommunications VA, Massachusetts:Academic, pp. 343-379, 2008.
25.
E. Skogen, J. Barton, S. Denbaars and L. Coldren, "A quantum-well intermixing process for wavelength-agile photonic integrated circuits", IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 4, pp. 863-869, Jul./Aug. 2002.
26.
V. I. Tolstikhin, R. Moore, K. Pimenov, Y. Logvin, F. Wu and C. D. Watson, "One-step growth optical transceiver PIC in InP", Eur. Conf. Opt. Commun. (ECOC), 2009, Paper 8.6.2-Sep.
27.
R. Broeke, J. Cao, C. Ji, S. Seo, Y. Du, N. Fontaine, et al., "Optical-CDMA in InP", IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1497-1507, Sep./Oct. 2007.
28.
S. Murthy, M. Kato, R. Nagarajan, M. Missey, V. Dominic, V. Lal, et al., "Large-scale photonic integrated circuit transmitters with monolithically integrated semiconductor optical amplifiers", Opt. Fiber Commun. Conf., 2008, Paper OTuN1-Mar.
29.
M. Newkirk, B. Miller, U. Koren, M. Young, M. Chien, R. Jopson, et al., " 1.5 \$mu\$ m multiquantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain ", IEEE Photon. Technol. Lett., vol. 4, no. 4, pp. 406-408, Apr. 1993.
30.
P. Thijs, L. Tiemeijer, J. Binsma and T. Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers", IEEE J. Quantum Electron., vol. 30, no. 2, pp. 477-499, Feb. 1994.

Contact IEEE to Subscribe

References

References is not available for this document.