Loading web-font TeX/Math/Italic
Two-Dimensional Tunneling Effects on the Leakage Current of MOSFETs With Single Dielectric and High-- Gate Stacks | IEEE Journals & Magazine | IEEE Xplore

Two-Dimensional Tunneling Effects on the Leakage Current of MOSFETs With Single Dielectric and High- \kappa Gate Stacks


Abstract:

The gate leakage currents of single-gate silicon-on- insulator (SOI) n-type MOSFETs are investigated, assuming direct tunneling as the leakage mechanism and using either ...Show More

Abstract:

The gate leakage currents of single-gate silicon-on- insulator (SOI) n-type MOSFETs are investigated, assuming direct tunneling as the leakage mechanism and using either a 1-D Schrodinger-Poisson-based approach coupled to the conventional drift-diffusion transport model or a full quantum mechanical treatment. The first approach consists of calculating the transmission probability through the dielectric material along straight lines connecting the transistor channel to the gate. The second method is based on a 2-D Schrodinger-Poisson solver, where carriers are injected into the device from the source, drain, and gate contacts. The simulated structures have a physical gate length of 32 nm. The channel is isolated from the gate contact by a dielectric layer with an equivalent oxide thickness of 1.2 nm. This layer is composed of either pure SiO2 or a high-kappa SiO2 - HfO2 stack. Irrespective of the dielectric material, the leakage currents calculated with the 1-D approach are about one order of magnitude smaller at low gate voltages and converge toward the same value as the channel potential barrier decreases. The difference is caused by the diffraction of the electron waves at both edges of the gate contact. This peculiar 2-D behavior of the gate leakage currents, as well as the limit of the 1-D model, is discussed in this paper for various dielectric configurations.
Published in: IEEE Transactions on Electron Devices ( Volume: 55, Issue: 6, June 2008)
Page(s): 1494 - 1501
Date of Publication: 20 May 2008

ISSN Information:

References is not available for this document.

Select All
1.
2.
L. Risch, "Pushing CMOS beyond the roadmap", Solid State Electron., vol. 50, no. 4, pp. 527-535, Apr. 2006.
3.
B. Doris, "Device design considerations for ultra-thinSOI MOSFETs", IEDM Tech. Dig., pp. 27.3.1-27.3.4, 2003.
4.
T. Irisawa, T. Numata, T. Tezuka, N. Sugiyama and S. Takagi, "Electron transport properties of ultrathin-bodyand tri-gate SOI nMOSFETs with biaxial and uniaxial strain", IEDM Tech. Dig., pp. 1-4, 2006.
5.
D. A. Buchanan, "Scaling the gate dielectric: Materialsintegration and reliability", IBM J. Res. Develop., vol. 43, no. 3, pp. 245-264, May 1999.
6.
G. D. Wilk, R. M. Wallace and J. M. Anthony, "High-kappa gatedielectrics: Current status and materials properties consideration", J. Appl. Phys., vol. 89, no. 10, pp. 5243, 2001.
7.
J. C. Lee, "High-k dielectricsand MOSFET characteristics", IEDM Tech. Dig., pp. 4.4.1-4.4.4, 2003.
8.
N. G. Tarr, D. L. Pulfrey and D. S. Camporese, "An analytic model for the MIS tunnel junction", IEEE Trans. Electron Devices, vol. ED-30, no. 12, pp. 1760-1770, Dec. 1983.
9.
J. Bardeen, "Tunneling from a many-particle point ofview", Phys. Rev. Lett., vol. 6, no. 2, pp. 57-62, 1961.
10.
A. Schenk and G. Heiser, "Modeling and simulation of tunneling throughultra-thin gate dielectrics", J. Appl. Phys., vol. 81, no. 12, pp. 7900-7908, Jun. 1997.
11.
A. Wettstein, A. Schenk and W. Fichtner, "Simulation of direct tunneling through stackedgate dielectrics by a fully integrated 1D-Schrödinger–Poissonsolver", IEICE Trans. Electron. Jpn., vol. E83-C, pp. 1189-1193, Aug. 2000.
12.
Sentaurus Device User Guide, 2007.
13.
A. C. Marsh and J. C. Inkson, "Scattering matrix theory of transport inheterostructures", Semicond. Sci. Technol., vol. 1, no. 4, pp. 285-290, Oct. 1986.
14.
Z. Ren, R. Venugopal, S. Goasguen, S. Datta and M. S. Lundstrom, "NanoMOS 2.5: A two-dimensional simulator for quantum transportin double-gate MOSFETs", IEEE Trans. Electron Devices, vol. 50, no. 9, pp. 1914-1925, Sep. 2003.
15.
R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom and D. Jovanovic, "Simulatingquantum transport in nanoscale transistors: Real versus mode-space approaches", J. Appl. Phys., vol. 92, no. 7, pp. 3730, Oct. 2002.
16.
E. Polizzi and N. Ben Abdallah, "Subband decomposition approach for the simulationof quantum electron transport in nanostructures", J. Comput. Phys., vol. 202, no. 1, pp. 150-180, Jan. 2005.
17.
M. Luisier, A. Schenk and W. Fichtner, "Quantum transport in two- and three-dimensionalnanoscale transistors: Coupled mode effects in the nonequilibrium Green'sfunction formalism", J. Appl. Phys., vol. 100, no. 4, pp. 043713-1-043713-12, Aug. 2006.
18.
W. R. Frensley, "Boundary conditions for open quantum systemsdriven far from equilibrium", Rev. Mod. Phys., vol. 62, no. 3, pp. 745-792, Jul. 1990.
19.
M. Luisier, G. Klimeck, A. Schenk and W. Fichtner, "Atomistic simulation of nanowires in the sp^{3}d^{5}s^{ast} tight-binding formalism: Fromboundary conditions to strain calculations", Phys. Rev. B Condens. Matter, vol. 74, no. 20, pp. 205323, 2006.
20.
A. Svizhenko, M. P. Anantram, T. R. Govindan, R. Biegel and R. Venugopal, "Two-dimensional quantum mechanical modelingof nanotransistors", J. App. Phys., vol. 91, no. 4, pp. 2343, Feb. 2002.
21.
T. A. Davis, "A column pre-ordering strategy for the unsymmetric-patternmultifrontal method", ACM Trans. Math. Softw., vol. 30, no. 2, pp. 165-195, Jun. 2004.
22.
O. Schenk and K. Grtner, "Solving unsymmetric sparse systems of linearequations with PARDISO", J. Future Generation Comput. Syst., vol. 20, no. 3, pp. 475-487, Apr. 2004.
23.
P. R. Amestoy, I. S. Duff and J.-Y. L'Excellent, "Multifrontal parallel distributed symmetricand unsymmetric solvers", Comput. Methods Appl. Mech. Eng., vol. 184, no. 2, pp. 501-520, Apr. 2000.
24.
V. Nam Do and P. Dollfus, "Oscillation of gate leakage current in double-gatemetal-oxide-semiconductor field-effect transistors", J. Appl. Phys., vol. 101, no. 7, pp. 073709, Apr. 2007.
25.
D. Mamaluy, M. Sabathil and P. Vogl, "Efficient method for the calculation of ballistic quantumtransport", J. Appl. Phys., vol. 93, no. 8, pp. 4628-4633, Apr. 2003.
26.
27.
Sentaurus Process User Guide, 2007.
28.
A. Campera, G. Iannaccone and F. Crupi, "Modeling of tunneling currents in Hf-based gate stacks asa function of temperature and extraction of material parameters", IEEE Trans. Electron Devices, vol. 54, no. 1, pp. 83-89, Jan. 2007.
29.
M. Luisier, A. Schenk and W. Fichtner, "Three-dimensional modeling of gate leakagein Si nanowire transistors", IEDM Tech. Dig., pp. 733-736, 2007.
Contact IEEE to Subscribe

References

References is not available for this document.