Abstract:
The modulator has a large on/off ratio, a low driving voltage (4 V), and operates in the 1.55- mu m wavelength region. Small device capacitance (0.2 pF) has been obtained...Show MoreMetadata
First Page of the Article

Abstract:
The modulator has a large on/off ratio, a low driving voltage (4 V), and operates in the 1.55- mu m wavelength region. Small device capacitance (0.2 pF) has been obtained by using spin-coated polyimides under the bonding pads, and small stray capacitance (0.07 pF) and bonding wide inductance (0.3 nH) have been realized. The modulator requires the lowest power yet reported for a high-frequency-operation external modulator.<>
Published in: IEEE Photonics Technology Letters ( Volume: 1, Issue: 5, May 1989)
DOI: 10.1109/68.34753
First Page of the Article

Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (20)
Select All
1.
T. Hatta, T. Miyahara, M. Ishizaki, N. Okada, S. Zaizen, K. Motoshima, K. Kasahara, "Inductance-controlled electroabsorption Modulator modules using the flip-chip bonding technique", Journal of Lightwave Technology, vol.23, no.2, pp.582-587, 2005.
2.
K. Yamada, K. Nakamura, H. Horikawa, "Design of double-pass electroabsorption modulators with low-voltage, high-speed properties for 40 Gb/s modulation", Journal of Lightwave Technology, vol.15, no.12, pp.2287-2293, 1997.
3.
M.K. Chin, "Optical confinement factor in waveguide electroabsorption modulators: design and measurement", IEEE Photonics Technology Letters, vol.6, no.8, pp.945-948, 1994.
4.
C. Fan, D.W. Shih, M.W. Hansen, S.C. Esener, H.H. Wieder, "Quantum-confined Stark effect modulators at 1.06 mu m on GaAs", IEEE Photonics Technology Letters, vol.5, no.12, pp.1383-1385, 1993.
5.
M.E. Chin, W.S.C. Chang, "Theoretical design optimization of multiple-quantum-well electroabsorption waveguide modulators", IEEE Journal of Quantum Electronics, vol.29, no.9, pp.2476-2488, 1993.
6.
M. Suzuki, H. Tanaka, N. Edagawa, K. Utaka, Y. Matsushima, "Transform-limited optical pulse generation up to 20-GHz repetition rate by a sinusoidally driven InGaAsP electroabsorption modulator", Journal of Lightwave Technology, vol.11, no.3, pp.468-473, 1993.
7.
D. Campi, C. Villavecchia, "Excitonic properties in semiconductor quantum wells: numerical calculations and scaling behavior", IEEE Journal of Quantum Electronics, vol.28, no.8, pp.1765-1772, 1992.
8.
M. Suzuki, H. Tanaka, Y. Matsushima, "InGaAsP electroabsorption modulator for high-bit-rate EDFA system", IEEE Photonics Technology Letters, vol.4, no.6, pp.586-588, 1992.
9.
H. Iwamura, H. Uenohara, A. Wakatsuki, Y. Kawamura, "High performance InGaAs/InAlAs MQW laser diodes grown by gas source molecular beam epitaxy", LEOS 1992 Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, and Smart Pixels, pp.469-472, 1992.
10.
K. Kawano, K. Wakita, O. Mitomi, I. Kotaka, M. Naganuma, "Design of InGaAs-InAlAs multiple-quantum-well (MQW) optical modulators", IEEE Journal of Quantum Electronics, vol.28, no.1, pp.224-230, 1992.
11.
M. Suzuki, H. Tanaka, H. Taga, S. Yamamoto, Y. Matsushima, "lambda /4-shifted DFB laser/electroabsorption modulator integrated light source for multigigabit transmission", Journal of Lightwave Technology, vol.10, no.1, pp.90-95, 1992.
12.
R.G. Walker, "High-speed III-V semiconductor intensity modulators", IEEE Journal of Quantum Electronics, vol.27, no.3, pp.654-667, 1991.
13.
M.K. Chin, P.K.L. Yu, W.S.C. Chang, "Optimization of multiple quantum well structures for waveguide electroabsorption modulators", IEEE Journal of Quantum Electronics, vol.27, no.3, pp.696-701, 1991.
14.
G. Mak, C. Rolland, K.E. Fox, C. Blaauw, "High-speed bulk InGaAsP-InP electroabsorption modulators with bandwidth in excess of 20 GHz", IEEE Photonics Technology Letters, vol.2, no.10, pp.730-733, 1990.
15.
O. Hildebrand, "Recent trends in InP-based optoelectronic components", ESSDERC '90: 20th European Solid State Device Research Conference, pp.505-514, 1990.
16.
A.L. Lentine, L.M.F. Chirovsky, L.A. D'Asaro, R.F. Kopf, J.M. Kuo, "High speed 2*4 array of differential quantum well modulators", IEEE Photonics Technology Letters, vol.2, no.7, pp.477-480, 1990.
17.
K. Wakita, I. Kotaka, O. Mitomi, H. Asai, Y. Kawamura, M. Naganuma, "High-speed InGaAlAs/InAlAs multiple quantum well optical modulators", Journal of Lightwave Technology, vol.8, no.7, pp.1027-1032, 1990.
18.
S.A. Pappert, R.J. Orazi, T.T. Vu, S.C. Lin, A.R. Clawson, P.K.L. Yu, "Polarization dependence of a 1.52 mu m InGaAs/InP multiple quantum well waveguide electroabsorption modulator", IEEE Photonics Technology Letters, vol.2, no.4, pp.257-259, 1990.
19.
T. Ikegami, K. Kubodera, "Nonlinear optical devices for switching applications", IEEE International Conference on Communications, Including Supercomm Technical Sessions, pp.1152-1156 vol.3, 1990.
20.
Y. Kawamura, H. Asai, Y. Sakai, I. Kotaka, M. Naganuma, "InGaAs/InAlAs SCH-MQW lasers with superlattice optical confinement layers grown by MBE", IEEE Photonics Technology Letters, vol.2, no.1, pp.1-2, 1990.
Cites in Papers - Other Publishers (11)
1.
Masahiro Aoki, "Ultrafast Semiconductor Laser Sources", Fibre Optic Communication, vol.161, pp.139, 2012.
2.
Mee Koy Chin, William S. C. Chang, "InGaAs/InAlAs quantum-well electroabsorption waveguide modulators with large-core waveguide structure: design and characterization", Applied Optics, vol.34, no.9, pp.1544, 1995.
3.
Isamu Kotaka, Kenji Sato, Koichi Wakita, Mitsuo Yamamoto, Tomoyoshi Kataoka, "High-speed (20 Gb/s), low-drive voltage (2 Vp-p) strained InGaAsP mqw modulator/DFB laser light source", Electronics and Communications in Japan (Part II: Electronics), vol.78, no.1, pp.1, 1995.
4.
S. A. Pappert, W. Xia, X. S. Jiang, Z. F. Guan, B. Zhu, Q. Z. Liu, L. S. Yu, A. R. Clawson, P. K. L. Yu, S. S. Lau, "Planar 1.3 and 1.55 μm InGaAs(P)/InP electroabsorption waveguide modulators using oxygen ion mixing and the photoelastic effect", Journal of Applied Physics, vol.75, no.9, pp.4352, 1994.
5.
Xiaohua H. Qu, Harry Ruda, "Microwave and millimeter wave generation using nonlinear optical mixing in asymmetric quantum wells", Journal of Applied Physics, vol.75, no.1, pp.54, 1994.
6.
C F Lo, R Sollie, "The mass dependence of the ground-state properties of the Wannier exciton in a quantum box", Journal of Physics: Condensed Matter, vol.5, no.45, pp.8587, 1993.
7.
Masatoshi Suzuki, Hideaki Tanaka, Hidenori Taga, Noboru Edagawa, Yuichi Matsushima, Hiroharu Wakabayashi, "Ultra-short pulse generation for soliton transmission using electroabsorption modulators", Fiber and Integrated Optics, vol.12, no.4, pp.355, 1993.
8.
Osamu Mitomi, Isamu Kotaka, Koichi Wakita, Shunji Nojima, Kenji Kawano, Yuichi Kawamura, Hiromitsu Asai, "40-GHz bandwidth InGaAs/InAlAs multiple quantum well optical intensity modulator", Applied Optics, vol.31, no.12, pp.2030, 1992.
9.
Isamu Kotaka, Osamu Mitomi, Koichi Wakita, Yuichi Kawamura, Hiromitsu Asai, "High-speed InGaAs/InAlAs multiple-quantum-well optical modulator", Electronics and Communications in Japan (Part II: Electronics), vol.75, no.6, pp.24, 1992.
10.
D. S. Chemla, Highlights in Condensed Matter Physics and Future Prospects, vol.285, pp.293, 1991.
11.
M. A. Z. Rejman-Greene, E. G. Scott, Photonic Switching II, vol.29, pp.179, 1990.