Abstract:
Well-defined control of high-and low-temperature anneals of boron implanted in silicon is important in the calculation of shallow p-n junction profiles used in MOSFET's. ...Show MoreMetadata
Abstract:
Well-defined control of high-and low-temperature anneals of boron implanted in silicon is important in the calculation of shallow p-n junction profiles used in MOSFET's. Here, a sample matrix of boron implanted into silicon over a range of fluences and annealing temperatures is considered. The matrix of samples was measured by SIMS (secondary ion mass spectrometry). The measured profiles were compared with simulations from an annealing/diffusion model. Calculations of the annealed profiles were found to be in agreement with the SIMS data at temperatures greater than 1000°C. At lower temperatures, the profiles exhibit effects due to implantation damage which are not included in the diffusion model.
Published in: IEEE Transactions on Electron Devices ( Volume: 32, Issue: 11, November 1985)
References is not available for this document.
Select All
1.
J. Albers, P. Roitman and C. L. Wilson, "Verification of models for fabrication of arsenic source-drains in VLSI MOSFETs", IEEE Trans. Electron Devices, vol. ED-30, pp. 1453-1462, 1983.
2.
W. K. Hofker, Implantation of boron in silicon, 1975.
3.
J. R. Troxell, "Ion-implantation associated defect production in silicon", Solid-State Electron., vol. 26, pp. 539-548, 1983.
4.
Y. Akasaka, K. Horie, K. Yoneda, T. Sakurai, H. Nishi, S. Kawabo, et al., " Depth distribution of defects and impurities in 100-keV B + ion implanted silicon ", J. Appl. Phys., vol. 44, pp. 220-224, 1973.
5.
W. Wach and K. Wittmaack, " Low energy range distributions of 10 3 and 11 B in amorphous and crystalline silicon ", Nucl. Instrum. Methods, vol. 194, pp. 113-116, 1982.
6.
H-G. Lee and R. W. Dutton, "Two-dimensional low concentration boron profiles: Modeling and measurement", IEEE Trans. Electron Devices, vol. ED-28, pp. 1136-1147, 1981.
7.
G. Masetti, M. Severi and S. Solmi, "Modeling of carrier mobility against carrier concentration in arsenic- phosphorus- and boron-doped silicon", IEEE Trans. Electron Devices, vol. ED-30, pp. 764-769, 1983.
8.
T. M. Liu and W. G. Oldham, "Channeling effect of low energy boron implant in (100) silicon", IEEE Electron Device Lett., vol. EDL-4, pp. 59-62, 1983.
9.
T. E. Seidel, " Rapid thermal annealing of BF 2 + implanted preamorphized silicon ", IEEE Electron Device Lett., vol. EDL-4, pp. 353-355, 1983.
10.
J. R. Ehrstein, R. G. Downing, B. R. Stallard, D. S. Simons and R F. Fleming, "Comparison of depth profiling B in silicon using spreading resistance profiling secondary ion mass spectrometry and neutron depth profiling" in Semiconductor Processing, Amer. Soc. Testing and Materials, 1984.
11.
R. B. Fair, "Physics and chemistry of impurity diffusion and oxidation in silicon" in Appl. Solid State Sci., New York:Academic, pp. 1-108, 1981.
12.
R. B. Fair, "Concentration profiles of diffused dopants in silicon" in Impurity Doping Processes in Silicon, New York:North Holland, pp. 315-442, 1981.
13.
R. B. Fair, J. J. Wortman and J. Liu, "Modeling rapid thermal annealing processes for shallow junction formation in silicon", IEDM Tech. Dig., pp. 658-661, 1983.
14.
R. Kwor and C. P. de Araujo, "Multizone modeling of impurity redistribution in ion-implanted materials", J. Electrochem. Soc., vol. 130, pp. 1580-1586, 1983.
15.
J. B. Biersack and L. G. Haggmark, "A Monte Carlo computer program for the transport of energetic ions in amorphous targets", Nucl. Instrum. Methods, vol. 174, pp. 257-269, 1980.
16.
W. R. Thurber, R. L. Mattis, Y. M. Liu and J. J. Filliben, Semiconductor Measurement Technology: The Relationship Between Resistivity and Dopant Density for Phosphorus- and Boron-Doped Silicon, 1981.
17.
J. B. Clegg, "A comparative study of SIMS depth profiling of boron in silicon", Surface and Interface Analysis, vol. 6, pp. 162-166, 1984.
18.
K. Wittmaack and W. Wach, "Profile distortions and atomic mixing in SIMS analysis using oxygen primary ions", Nucl. Instrum. Methods, vol. 191, pp. 327-334, 1981.
19.
V. R. Deline, "Instrumental cross-contamination in the Cameca IMS-3F secondary ion microscope", Nucl. Instrum. Methods, vol. 218, pp. 316-318, 1983.
20.
B. E. Deal and A. S. Grove, "General relationship for the thermal oxidation of silicon", Phys. Rev., vol. 36, pp. 3770-3778, 1965.
21.
R. G. Wilson, H. L. Dunlap, D. M. Jamba and D. R. Myers, Angular Sensitivity of Controlled Implanted Doping Profiles, pp. 400-449, 1978.
22.
D. D. Warner and C. L. Wilson, "Two-dimensional concentration dependent diffusion", Bell Syst. Tech. J., vol. 59, pp. 1-41, 1980.
23.
S. M. Hu and S. Schmidt, "Interactions in sequential diffusion processes in semiconductors", J. Appl. Phys., vol. 39, pp. 4272-4283, 1968.
24.
F. J. Morin and J. P. Maita, "Electrical properties of silicon containing arsenic and boron", Phys. Rev., vol. 96, pp. 28-35, 1954.
25.
B2DE Users Manual.
26.
Guide to Available Mathematic Software, 1982.
27.
J. D. Lambert, Computational Methods in Ordinary Differential Equations, New York:Wiley, 1973.
28.
D. Mathiot and J. C. Pfister, "Dopant diffusion in silicon: A consistent view involving nonequilibrium defects", J. Appl. Phys., vol. 55, pp. 3518-3530, 1984.