Loading web-font TeX/Main/Regular
Lightweight Prompt Learning Implicit Degradation Estimation Network for Blind Super Resolution | IEEE Journals & Magazine | IEEE Xplore

Lightweight Prompt Learning Implicit Degradation Estimation Network for Blind Super Resolution


Abstract:

Blind image super-resolution (SR) aims to recover a high-resolution (HR) image from its low-resolution (LR) counterpart under the assumption of unknown degradations. Many...Show More

Abstract:

Blind image super-resolution (SR) aims to recover a high-resolution (HR) image from its low-resolution (LR) counterpart under the assumption of unknown degradations. Many existing blind SR methods rely on supervising ground-truth kernels referred to as explicit degradation estimators. However, it is very challenging to obtain the ground-truths for different degradations kernels. Moreover, most of these methods rely on heavy backbone networks, which demand extensive computational resources. Implicit degradation estimators do not require the availability of ground truth kernels, but they see a significant performance gap with the explicit degradation estimators due to such missing information. We present a novel approach that significantly narrows such a gap by means of a lightweight architecture that implicitly learns the degradation kernel with the help of a novel loss component. The kernel is exploited by a learnable Wiener filter that performs efficient deconvolution in the Fourier domain by deriving a closed-form solution. Inspired by prompt-based learning, we also propose a novel degradation-conditioned prompt layer that exploits the estimated kernel to drive the focus on the discriminative contextual information that guides the reconstruction process in recovering the latent HR image. Extensive experiments under different degradation settings demonstrate that our model, named PL-IDENet, yields PSNR and SSIM improvements of more than 0.4dB and 1.3%, and 1.4dB and 4.8% to the best implicit and explicit blind-SR method, respectively. These results are achieved while maintaining a substantially lower number of parameters/FLOPs (i.e., 25% and 68% fewer parameters than best implicit and explicit methods, respectively).
Published in: IEEE Transactions on Image Processing ( Volume: 33)
Page(s): 4556 - 4567
Date of Publication: 19 August 2024

ISSN Information:

PubMed ID: 39159027

Funding Agency:

References is not available for this document.

I. Introduction

Image super-resolution (SR) is the task of enhancing low-resolution (LR) to high-resolution (HR) images. It finds a plethora of applications in various domains [1], [2], [3], [4], [5], [6], especially where capturing an HR image is constrained by physical factors such as hardware limitations or bandwidth constraints.

Select All
1.
C. Dong, C. C. Loy, K. He and X. Tang, "Learning a deep convolutional network for image super-resolution", Proc. Eur. Conf. Comput. Vis., pp. 184-199, 2014.
2.
B. Lim, S. Son, H. Kim, S. Nah and K. M. Lee, "Enhanced deep residual networks for single image super-resolution", Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), pp. 136-144, Jul. 2017.
3.
C. Ledig et al., "Photo-realistic single image super-resolution using a generative adversarial network", Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 4681-4690, Jul. 2017.
4.
J. Johnson, A. Alahi and L. Fei-Fei, "Perceptual losses for real-time style transfer and super-resolution", Proc. Eur. Conf. Comput. Vis., pp. 694-711, 2016.
5.
C. Ma, Y. Rao, Y. Cheng, C. Chen, J. Lu and J. Zhou, "Structure-preserving super resolution with gradient guidance", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 7769-7778, Jun. 2020.
6.
B. Xia et al., "Basic binary convolution unit for binarized image restoration network", arXiv:2210.00405, 2022.
7.
J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool and R. Timofte, "SwinIR: Image restoration using Swin transformer", Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW), pp. 1833-1844, Oct. 2021.
8.
X. Wang et al., "ESRGAN: Enhanced super-resolution generative adversarial networks", Proc. ECCVW, pp. 63-79, Sep. 2018.
9.
Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong and Y. Fu, "Image super-resolution using very deep residual channel attention networks", Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 286-301, 2018.
10.
B. Niu et al., "Single image super-resolution via a holistic attention network", Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 191-207, 2020.
11.
K. Zhang, J. Liang, L. Van Gool and R. Timofte, "Designing a practical degradation model for deep blind image super-resolution", Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 4791-4800, Oct. 2021.
12.
Y. Zhang, Y. Tian, Y. Kong, B. Zhong and Y. Fu, "Residual dense network for image super-resolution", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 2472-2481, Jun. 2018.
13.
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering", IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.
14.
S. Gu, N. Sang and F. Ma, "Fast image super resolution via local regression", Proc. 21st Int. Conf. Pattern Recognit. (ICPR), pp. 3128-3131, Nov. 2012.
15.
A. Vaswani et al., "Attention is all you need", Proc. NeurIPS, vol. 30, pp. 5998-6008, 2017.
16.
H. Chen et al., "Pre-trained image processing transformer", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 12299-12310, Jun. 2021.
17.
S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan and M.-H. Yang, "Restormer: Efficient transformer for high-resolution image restoration", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 5728-5739, Jun. 2022.
18.
K. Zhang, W. Zuo and L. Zhang, "Learning a single convolutional super-resolution network for multiple degradations", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 3262-3271, Jun. 2018.
19.
A. Shocher, N. Cohen and M. Irani, "‘Zero-shot’ super-resolution using deep internal learning", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3118-3126, Sep. 2018.
20.
J. W. Soh, S. Cho and N. I. Cho, "Meta-transfer learning for zero-shot super-resolution", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 3516-3525, Jun. 2020.
21.
Y.-S. Xu, S. R. Tseng, Y. Tseng, H.-K. Kuo and Y.-M. Tsai, "Unified dynamic convolutional network for super-resolution with variational degradations", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 12493-12502, Jun. 2020.
22.
J. Gu, H. Lu, W. Zuo and C. Dong, "Blind super-resolution with iterative kernel correction", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 1604-1613, Jun. 2019.
23.
S. Bell-Kligler, A. Shocher and M. Irani, "Blind super-resolution kernel estimation using an internal-GAN", Proc. NeurIPS, vol. 32, pp. 284-293, 2019.
24.
C.-Y. Yang, C. Ma and M.-H. Yang, "Single-image super-resolution: A benchmark", Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 372-386, Sep. 2014.
25.
Z. Chen et al., "NTIRE 2024 challenge on image super-resolution (x4): Methods and results", Proc. IEEE/CVF CVPRW, pp. 6108-6132, Jun. 2024.
26.
L. Wang et al., "Unsupervised degradation representation learning for blind super-resolution", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 10576-10585, Jun. 2021.
27.
Z. Luo, H. Huang, L. Yu, Y. Li, H. Fan and S. Liu, "Deep constrained least squares for blind image super-resolution", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 17621-17631, Jun. 2022.
28.
X. Wang, L. Xie, C. Dong and Y. Shan, "Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data", Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW), pp. 1905-1914, Oct. 2021.
29.
Y. Huang, S. Li, L. Wang and T. Tan, "Unfolding the alternating optimization for blind super resolution", Proc. NeurIPS, vol. 33, pp. 5632-5643, 2020.
30.
J. Liang, H. Zeng and L. Zhang, "Efficient and degradation-adaptive network for real-world image super-resolution", Proc. Eur. Conf. Comput. Vis., pp. 574-591, 2022.
Contact IEEE to Subscribe

References

References is not available for this document.