Loading [MathJax]/extensions/MathZoom.js
Dinesh K. Patel - IEEE Xplore Author Profile

Showing 1-6 of 6 results

Filter Results

Show

Results

Microspine grippers allow robots to ascend steep rocky slopes and cliff faces, enabling scientific exploration of exposed strata on Earth and other solar system bodies. Historically, the Shape Deposition Manufacturing (SDM) process has been used to fabricate multi-material suspensions for load-sharing among multiple microspines. We instead apply the Hybrid Deposition Manufacturing (HDM) process to...Show More
Shape memory alloy (SMA) actuators can provide significant advantages for small-scale robotics given their robustness, energy density, and low voltage actuation. However, NiTi thin films typically found in SMA microactuators do not often provide useful forces and displacements for microrobotic applications. This work presents a fabrication process in which NiTi thin film actuators are integrated w...Show More
This work demonstrates two strategies to reduce the energy required for actuation of thin film NiTi unimorph actuators with 3D printed polymeric passive layers. First, by taking advantage of 3D printing, a low mass and high stiffness passive layer can be used to achieve faster heating/cooling rates. This ultimately reduces the time and energy required to achieve a threshold temperature. The second...Show More
Soft, stretchable sensors, such as artificial skins or tactile sensors, are attractive for numerous soft robotic applications due to the low material compliance. Conductive polymers are a necessary component of many soft sensors, and this work presents the electromechanical characterization of 3D-printable conductive polymer composites. Dog-bone shaped samples were 3D printed using a digital light...Show More
This work demonstrates the first sputtered thin-film nickel-titanium (NiTi) shape-memory alloy (SMA) actuators combined with direct 3D printing of polymeric structures. Resulting actuators are fast to prototype, reliable and stable (up to 5000 cycles), and can utilize complex geometries challenging to achieve with conventional MEMS microfabrication. The actuator design uses 3D printed polymer as t...Show More
This work presents the design, modeling, and fabrication of a whisker-like sensor capable of measuring the whisker's angular displacement as well as the applied moments at the base of the whisker. The sensor takes advantage of readily accessible and low-cost 3D magnetic sensors to transduce whisker deflections, and a planar serpentine spring structure at the whisker base is used to provide a mecha...Show More