Loading [MathJax]/extensions/MathMenu.js
Artificial Neural Network-Based Nonlinear Black-Box Modeling of Synchronous Generators | IEEE Journals & Magazine | IEEE Xplore

Artificial Neural Network-Based Nonlinear Black-Box Modeling of Synchronous Generators


Abstract:

This article deals with the black-box modeling of synchronous generators based on artificial neural networks (ANN). The ANN is applied to define the relationship between ...Show More

Abstract:

This article deals with the black-box modeling of synchronous generators based on artificial neural networks (ANN). The ANN is applied to define the relationship between the excitation and terminal generator voltage values, and the Levenberg–Marquardt algorithm is used for determining the ANN weight coefficients. The relation is made based on generator response on reference voltage step changes. The proposed approach is checked using the experimental results obtained from the measurements on a real 120 MVA generator from a hydroelectric power plant Piva in Montenegro. Furthermore, a fair comparison of the nonlinear autoregression model with the exogenous input (NARX) and Hammerstein–Wiener model is made. For the validation, different experiments were conducted—different values of step disturbances, other controller parameters, and different rotating speeds. Based on the presented results, it can be noted that the proposed ANN model is very accurate and provides a very high degree of matching with the experimental results and outperforms the other considered nonlinear models. Furthermore, the proposed test procedure and model are easy to implement and do not require disconnection of the generator from the grid or additional equipment for experimental realization. Such obtained models can be used for different testing types related to the excitation system.
Published in: IEEE Transactions on Industrial Informatics ( Volume: 19, Issue: 3, March 2023)
Page(s): 2826 - 2837
Date of Publication: 01 July 2022

ISSN Information:

References is not available for this document.

I. Introduction

Synchronous generators (SGs) are one of the main parts of the entire electric power system sector. They are the largest producers of active power, but at the same time, they regulate the voltage level of the connection bus in the power system. Therefore, there are two control loops for the SG: turbine control used to maintain the frequency and active power at the desired level, and excitation control, which controls reactive power flow and voltage level. The analysis of the generator operation, both from the point of view of active power production or voltage regulation, requires an accurate and reliable model of the generator and an appropriate identification method [1]. This article deals with the relationship between excitation and terminal generator voltage.

Select All
1.
T. A. Lipo, Analysis of Synchronous Machines, Boca Raton, FL, USA:CRC Press, pp. 606, 2017.
2.
IEEE Guide: Test Procedures for Synchronous Machines, 1995.
3.
M. B. Slimene, A. S. Saidi and M. A. Khlifi, "Estimation of hydropower synchronous generator parameters through field simulations of modified standard tests", J. Elect. Eng. Technol., vol. 16, no. 1, pp. 91-99, 2021.
4.
G. G. Rodríguez, A. S. e Silva and N. Zeni, "Identification of synchronous machine parameters from field flashing and load rejection tests with field voltage variations", Elect. Power Syst. Res., vol. 143, pp. 813-824, 2017.
5.
B. Zaker, G. B. Gharehpetian and M. Karrari, " Improving synchronous generator parameters estimation using d - q axes tests and considering saturation effect ", IEEE Trans. Ind. Inform., vol. 14, no. 5, pp. 1898-1908, May 2018.
6.
V. A. D. Faria, J. V. Bernardes and E. C. Bortoni, "Parameter estimation of synchronous machines considering field voltage variation during the sudden short-circuit test", Int. J. Elect. Power Energy Syst., vol. 114, 2020.
7.
M. Micev, M. Ćalasan, D. S. Petrović, Z. M. Ali, N. V. Quynh and H. E. S. A. Aleem, "Field current waveform-based method for estimation of synchronous generator parameters using adaptive black widow optimization algorithm", IEEE Access, vol. 8, pp. 207537-207550, 2020.
8.
M. Micev, M. Ćalasan, S. H. E. A. Aleem, H. M. Hasanien and D. S. Petrović, "Two novel approaches for identification of synchronous machine parameters from short-circuit current waveform", IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 5536-5546, Jun. 2022.
9.
M. Micev, M. Ćalasan and M. Radulović, "Full synchronous machine parameters identification based on field and armature current during the short-circuit", IEEE Trans. Ind. Appl., vol. 57, no. 6, pp. 5959-5968, Nov./Dec. 2021.
10.
J. Lidenholm and U. Lundin, "Estimation of hydropower generator parameters through field simulations of standard tests", IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 931-939, Dec. 2010.
11.
A. Mitra, A. Mohapatra, S. Chakrabarti and S. Sarkar, "Online measurement based joint parameter estimation of synchronous generator and exciter", IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 820-830, Jun. 2021.
12.
M. Dehghani, M. Karrari, W. Rosehart and O. P. Malik, "Synchronous machine model parameters estimation by a time-domain identification method", Int. J. Elect. Power Energy Syst., vol. 32, no. 5, pp. 524-529, 2010.
13.
Y. Xu, L. Mili, M. Korkali and X. Chen, "An adaptive Bayesian parameter estimation of a synchronous generator under gross errors", IEEE Trans. Ind. Inform., vol. 16, no. 8, pp. 5088-5098, Aug. 2020.
14.
Y. Li, J. Li, J. Qi and L. Chen, "Robust cubature kalman filter for dynamic state estimation of synchronous machines under unknown measurement noise statistics", IEEE Access, vol. 7, pp. 29139-29148, 2019.
15.
A. Rouhani and A. Abur, "Constrained iterated unscented Kalman filter for dynamic state and parameter estimation", IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2404-2414, May 2018.
16.
M. Hasni, O. Touhami, R. Ibtiouen, M. Fadel and S. Caux, "Estimation of synchronous machine parameters by standstill tests", Math. Comput. Simul., vol. 81, no. 2, pp. 277-289, 2010.
17.
M. Cisneros-González, C. Hernandez, R. Morales-Caporal, E. Bonilla-Huerta and M. A. Arjona, "Parameter estimation of a synchronous-generator two-axis model based on the standstill chirp test", IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 44-51, Mar. 2013.
18.
M. A. Arjona, M. Cisneros-Gonzalez and C. Hernandez, "Parameter estimation of a synchronous generator using a sine cardinal perturbation and mixed stochastic deterministic algorithms", IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 486-493, Feb. 2011.
19.
M. A. Arjona, C. Hernandez, M. Cisneros-Gonzalez and R. Escarela-Perez, "Estimation of synchronous generator parameters using the standstill step-voltage test and a hybrid genetic algorithm", Int. J. Elect. Power Energy Syst., vol. 35, no. 1, pp. 105-111, 2012.
20.
M. Giesbrecht and L. A. E. Meneses, "Detailed derivation and experimental validation of a method for obtaining load conditions for salient pole synchronous machine quadrature axis parameters determination", IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5049-5056, Jul. 2019.
21.
G. Hutchison, B. Zahawi, K. Harmer, S. Gadoue and D. Giaouris, "Non-invasive identification of turbogenerator parameters from actual transient network data", IET Gener. Transmiss. Distrib., vol. 9, no. 11, pp. 1129-1136, 2015.
22.
B. Zaker, R. Khalili, H. Rabieyan and M. Karrari, "A new method to identify synchronous generator and turbine-governor parameters of a gas unit using a closed-loop model", Int. Trans. Elect. Energy Syst., vol. 31, no. 11, Nov. 2021.
23.
E. L. Geraldi, T. C. C. Fernandes, A. B. Piardi, A. P. Grilo and R. A. Ramos, "Parameter estimation of a synchronous generator model under unbalanced operating conditions", Elect. Power Syst. Res., vol. 187, 2020.
24.
K. K. Challa and G. Gurrala, "Dynamic state and parameter estimation of synchronous generator from digital relay records", Elect. Power Syst. Res., vol. 189, 2020.
25.
T. L. Vandoorn, F. M. De Belie, T. J. Vyncke, J. A. Melkebeek and P. Lataire, "Generation of multisinusoidal test signals for the identification of synchronous-machine parameters by using a voltage-source inverter", IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 430-439, Jan. 2010.
26.
L. Beordo, E. P. T. Cari, T. G. Landgraf and L. F. C. Alberto, "A comparative validation of a synchronous generator by trajectory sensitivity and offline methods", Int. Trans. Elect. Energy Syst., vol. 27, no. 2, 2017.
27.
O. Loyola-Gonzalez, "Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view", IEEE Access, vol. 7, pp. 154096-154113, 2019.
28.
A. G. Abro and J. M. Saleh, "ANN-based synchronous generator excitation for transient stability enhancement and voltage regulation", Appl. Artif. Intell., vol. 27, no. 1, pp. 20-35, Jan. 2013.
29.
I. A. Basheer and M. Hajmeer, "Artificial neural networks: Fundamentals computing design and application", J. Microbiol. Methods, vol. 43, no. 1, pp. 3-31, 2000.
30.
M. Nørgaard, O. Ravn, N. K. Poulsen and L. K. Hansen, Neural Networks for Modelling and Control of Dynamic Systems, London, U.K.:Springer-Verlag, 2000.

Contact IEEE to Subscribe

References

References is not available for this document.