Loading [a11y]/accessibility-menu.js
Efficient Container Assignment and Layer Sequencing in Edge Computing | IEEE Journals & Magazine | IEEE Xplore

Efficient Container Assignment and Layer Sequencing in Edge Computing


Abstract:

Containers are becoming a popular way of running applications in edge computing. Before running the application, the edge node must download the application’s container i...Show More

Abstract:

Containers are becoming a popular way of running applications in edge computing. Before running the application, the edge node must download the application’s container image consisting of multiple layers. However, given the limited bandwidth in edge computing, the container startup latency due to long image download time seriously affects the real-time performance. In this article, we jointly determine the container assignment and the layer download sequence to reduce the total startup latency. We formulate the Container Assignment and Layer Sequencing (CALS) problem and prove its NP-hardness. A Layer-Aware Scheduling Algorithm (LASA) is proposed, fully considering layer sharing among images. First, layers shared by the same set of images are grouped to reduce CALS’s problem scale without affecting the optimal result. Second, considering both layer sharing and existing layer size on edge nodes, a layer-aware algorithm is designed to assign containers to appropriate edge nodes. Finally, to determine the layer download sequence on each edge node, an approximation algorithm is proposed. We further analyze the approximation ratio of LASA in the case of identical edge nodes with sufficient capacity. Extensive experiments based on real-world data show the effectiveness of LASA, which reduces the total startup latency by 40% to 60%.
Published in: IEEE Transactions on Services Computing ( Volume: 16, Issue: 2, 01 March-April 2023)
Page(s): 1118 - 1131
Date of Publication: 16 March 2022

ISSN Information:

Funding Agency:

References is not available for this document.

1 Introduction

With the increasing demand for low-latency and highly flexible applications, cloudlets [1], fog [2] and edge computing [3] that are in closer proximity to mobile devices provide attractive ways to deploy applications. Ultra-low latency and ultra-high bandwidth 5G technology further facilitates the development of edge computing [4], [5]. Virtualization can provide isolated environments for applications to avoid software-dependency conflicts and enhance system robustness [6]. However, in edge computing, the computation resources and communication resources are limited compared with the cloud, and the edge environment changes are rapid [7], [8]. Traditional virtualization techniques, i.e., heavy virtual machine (VM), cannot resolve these issues. The emerging technique, container, is believed to be a promising way to deploy applications in edge computing [9], [10]. Multiple containers on the same node share the machine’s OS system kernel and thereby do not require an OS per container, driving higher server efficiencies, suitable for resource-limited edge nodes.

Select All
1.
M. Satyanarayanan, P. Bahl, R. Caceres and N. Davies, "The case for VM-based cloudlets in mobile computing", IEEE Pervasive Comput., vol. 8, no. 4, pp. 14-23, 2009.
2.
F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog computing and its role in the Internet of Things", Proc. 1st ed. MCC Workshop Mobile Cloud Comput., pp. 13-16, 2012.
3.
W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge computing: Vision and challenges", IEEE Internet Things J., vol. 3, no. 5, pp. 637-646, Oct. 2016.
4.
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta and D. Sabella, "On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration", IEEE Commun. Surv. Tuts., vol. 19, no. 3, pp. 1657-1681, 2017.
5.
K. Zhang, S. Leng, Y. He, S. Maharjan and Y. Zhang, "Cooperative content caching in 5G networks with mobile edge computing", IEEE Wireless Commun., vol. 25, no. 3, pp. 80-87, Jun. 2018.
6.
J. Zhang, X. Zhou, T. Ge, X. Wang and T. Hwang, "Joint task scheduling and containerizing for efficient edge computing", IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 8, pp. 2086-2100, Aug. 2021.
7.
Q.-V. Pham et al., "A survey of multi-access edge computing in 5G and beyond: Fundamentals technology integration and state-of-the-art", IEEE Access, vol. 8, pp. 974-117, 2020.
8.
X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan and X. Chen, "Convergence of edge computing and deep learning: A comprehensive survey", IEEE Commun. Surv. Tuts., vol. 22, no. 2, pp. 869-904, 2020.
9.
L. Wang, L. Jiao, T. He, J. Li and M. Mühlhäuser, "Service entity placement for social virtual reality applications in edge computing", Proc. IEEE Conf. Comput. Commun., pp. 468-476, 2018.
10.
Q. Qu, R. Xu, S. Y. Nikouei and Y. Chen, "An experimental study on microservices based edge computing platforms", Proc. IEEE Conf. Comput. Commun. Workshops, pp. 836-841, 2020.
11.
"iRobot ready to unlock the next generation of smart homes using the AWS cloud", 2019, [online] Available: https://aws.amazon.com/solutions/case-studies/irobot/9.
12.
A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune and J. Wilkes, "Large-scale cluster management at Google with borg", Proc. 10th Eur. Conf. Comput. Syst., pp. 1-17, 2015.
13.
S. Fu, R. Mittal, L. Zhang and S. Ratnasamy, "Fast and efficient container startup at the edge via dependency scheduling", Proc. 3rd USENIX Workshop Hot Top. Edge Comput., 2020.
14.
T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau, "Slacker: Fast distribution with lazy docker containers", Proc. 14th USENIX Conf. File Storage Technol., pp. 181-195, 2016.
15.
J. Thalheim, P. Bhatotia, P. Fonseca and B. Kasikci, "CNTR: Lightweight OS containers", Proc. USENIX Annu. Tech. Conf., pp. 199-212, 2018.
16.
M. Park, K. Bhardwaj and A. Gavrilovska, "Toward lighter containers for the edge", Proc. 3rd USENIX Workshop Hot Top. Edge Comput., 2020.
17.
D. Skourtis, L. Rupprecht, V. Tarasov and N. Megiddo, "Carving perfect layers out of Docker images", Proc. 11th USENIX Workshop Hot Top. Cloud Comput., 2019.
18.
M.-H. Chen, B. Liang and M. Dong, "Joint offloading and resource allocation for computation and communication in mobile cloud with computing access point", Proc. IEEE Conf. Comput. Commun., pp. 1-9, 2017.
19.
"Docker official images", 2021, [online] Available: https://github.com/docker-library/.
20.
X. Chen, L. Jiao, W. Li and X. Fu, "Efficient multi-user computation offloading for mobile-edge cloud computing", IEEE/ACM Trans. Netw., vol. 24, no. 5, pp. 2795-2808, Oct. 2016.
21.
H. Tan, Z. Han, X.-Y. Li and F. C. M. Lau, "Online job dispatching and scheduling in edge-clouds", Proc. IEEE Conf. Comput. Commun., pp. 1-9, 2017.
22.
H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi and C. Assi, "Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing", IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 668-682, Mar. 2019.
23.
K. Habak, M. Ammar, K. A. Harras and E. Zegura, "Femto clouds: Leveraging mobile devices to provide cloud service at the edge", Proc. IEEE 8th Int. Conf. Cloud Comput., pp. 9-16, 2015.
24.
Y.-H. Kao, B. Krishnamachari, M.-R. Ra and F. Bai, "Hermes: Latency optimal task assignment for resource-constrained mobile computing", IEEE Trans. Mobile Comput., vol. 16, no. 11, pp. 3056-3069, Nov. 2017.
25.
L. Qu, C. Assi and K. Shaban, "Delay-aware scheduling and resource optimization with network function virtualization", IEEE Trans. Commun., vol. 64, no. 9, pp. 3746-3758, Sep. 2016.
26.
R. Cziva, C. Anagnostopoulos and D. P. Pezaros, "Dynamic latency-optimal VNF placement at the network edge", Proc. IEEE Conf. Comput. Commun., pp. 693-701, 2018.
27.
Z. Ning et al., "Distributed and dynamic service placement in pervasive edge computing networks", IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 6, pp. 1277-1292, Jun. 2021.
28.
R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco and F. Liberal, "Virtual network function placement optimization with deep reinforcement learning", IEEE J. Sel. Areas Commun., vol. 38, no. 2, pp. 292-303, Feb. 2020.
29.
G. Sallam and B. Ji, "Joint placement and allocation of virtual network functions with budget and capacity constraints", Proc. IEEE Conf. Comput. Commun., pp. 523-531, 2019.
30.
H. Zhu and O. H. Ibarra, "On some approximation algorithms for the set partition problem", Proc. 15th Triennial Conf. Int. Fed. Oper. Res. Soc., 1999.

Contact IEEE to Subscribe

References

References is not available for this document.