Loading web-font TeX/Math/Italic
A 1024-Element Ku-Band SATCOM Phased-Array Transmitter With 45-dBW Single-Polarization EIRP | IEEE Journals & Magazine | IEEE Xplore

A 1024-Element Ku-Band SATCOM Phased-Array Transmitter With 45-dBW Single-Polarization EIRP


Abstract:

This article presents a 1024-element Ku-band phased-array transmitter for mobile satellite communications. The array is based on eight-channel transmit (TX) SiGe beamform...Show More

Abstract:

This article presents a 1024-element Ku-band phased-array transmitter for mobile satellite communications. The array is based on eight-channel transmit (TX) SiGe beamformer chips. Dual-polarized stacked-patch antennas enable the array to synthesize linear, rotated-linear, and left- and right-hand circular polarization. The array consists of four quadrants of 256-element subarrays, each of which has 64 beamformer chips and a driver chip assembled on a printed circuit board (PCB). The array achieves an effective isotropic radiated power (EIRP) of 75 dBm per polarization (78-dBm circular polarization) and scans to ±75° in all planes. This is achieved using an antenna spacing of \lambda /2 at 14.4 GHz in an equilateral triangular grid. The array also results in 30-dB cross-polarization rejection up to 60° scan angles. Measured error vector magnitude (EVM) for 50-, 100-, 200-, and 500-MBd QPSK and 8 phase-shift keying (8PSK) waveforms results in at most 1.5%rms and 2.5%rms at P_{1\textrm {dB}} and P_{\mathrm{ sat}} , respectively, at 14 GHz over all scan angles. Also, the adjacent channel power ratio (ACPR) was measured as −32 dB for 200- and 500-MBd QPSK and 8 phase-shift keying (8PSK) waveforms at P_{1\textrm {dB}} at 14 GHz. To the authors’ knowledge, this work presents a state-of-the-art planar phased-array system with high EIRP for Ku-band satellite communication (SATCOM) mobile transmitter terminals.
Published in: IEEE Transactions on Microwave Theory and Techniques ( Volume: 69, Issue: 9, September 2021)
Page(s): 4157 - 4168
Date of Publication: 10 May 2021

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Mobile satellite communication (SATCOM) provides a feasible solution for broadband Internet access to underserved areas [1]. Low-Earth orbit (LEO) satellite constellations, with orbits at 800–1200 km and a latency of 30 ms, are currently being built and launched for this purpose and are expected to enter operation in 2021 and 2022. The LEO satellites have a typical rise to set times of 0.5–1 hour and need to be constantly tracked, and an active electronically scanned array (AESA) is essential for reliable operation [see Fig. 1(a)]. Also, phased arrays are promising for ground, maritime, and airborne satellite communication-on-the-move (SOTM) platforms for both LEO and geostationary Earth orbit (GEO) applications since the antenna can be pointed quickly to the satellite and can easily compensate for the platform motion [2]–[4].

(a) 1024-element dual-polarized SATCOM TX phased-array based on eight-channel beamformer chips. (b) subarray with an eight-channel Ku-band TX beamformer chip. (c) 12-layer PCB stackup.

Select All
1.
S. Vaccaro, L. Diamond, D. Runyon and M. C. Vigano, "Ka-band mobility terminals enabling new services", Proc. 8th Eur. Conf. Antennas Propag. (EuCAP), pp. 2617-2618, Apr. 2014.
2.
D. Wilcoxson, B. Sleight, J. O’Neill and D. Chester, "Helicopter Ku-band SATCOM On-the-move", Proc. IEEE Mil. Commun. Conf. (MILCOM), pp. 1-7, Oct. 2006.
3.
D. Wilcoxson, B. Sleight, D. Buchman and R. VanderMeulen, "Ku-band SATCOM On-the move network", Proc. IEEE Mil. Commun. Conf. (MILCOM), vol. 1, pp. 231-237, Oct. 2005.
4.
S. Vaccaro, F. Tiezzi, D. Llorens, M. F. Rua and C. D. G. de Oro, "Ku-band low profile antennas for mobile SATCOM", Proc. 4th Adv. Satell. Mobile Syst., pp. 24-28, Aug. 2008.
5.
G. Gultepe, S. Zihir, T. Kanar and G. M. Rebeiz, "A dual-polarized 1024-element Ku-band SATCOM transmit phased-array with ±70° scan and 43.5 dBW EIRP", IEEE MTT-S Int. Microw. Symp. Dig., pp. 837-840, Aug. 2020.
6.
L. Paulsen et al., "Fabrication and measurement of a large monolithic PCB-based AESA", Proc. IEEE Int. Symp. Phased Array Syst. Technol. (PAST), pp. 1-7, Oct. 2016.
7.
A. H. Aljuhani, T. Kanar, S. Zihir and G. M. Rebeiz, "A scalable dual-polarized 256-element Ku-band phased-array SATCOM receiver with ±70° beam scanning", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1203-1206, Jun. 2018.
8.
A. H. Aljuhani, T. Kanar, S. Zihir and G. M. Rebeiz, "A scalable dual-polarized 256-element Ku-band SATCOM phased-array transmitter with 36.5 dBW EIRP per polarization", Proc. 48th Eur. Microw. Conf. (EuMC), pp. 938-941, Sep. 2018.
9.
K. K. W. Low, A. Nafe, S. Zihir, T. Kanar and G. M. Rebeiz, "A scalable circularly-polarized 256-element Ka-band phased-array SATCOM transmitter with ±60° beam scanning and 34.5 dBW EIRP", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1064-1067, Jun. 2019.
10.
W. M. Abdel-Wahab et al., "A modular architecture for wide scan angle phased array antenna for K/Ka mobile SATCOM", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1076-1079, Jun. 2019.
11.
G. Gültepe, T. Kanar, S. Zihir and G. M. Rebeiz, "A 1024-element Ku-band SATCOM dual-polarized receiver with >10-dB/K G/T and embedded transmit rejection filter", IEEE Trans. Microw. Theory Techn., [online] Available: https://ieeexplore.ieee.org/document/9416306.
12.
Y. Wang et al., "A CMOS Ka-band SATCOM transceiver with ACI-cancellation enhanced dual-channel low-NF wide-dynamic-range RX and high-linearity TX", Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), pp. 355-358, Aug. 2020.
13.
T. LaRocca et al., "Q-band CMOS transmitter system-on-chip for protected satellite communication", Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), pp. 180-183, Jun. 2018.
14.
D. M. Pozar, "Microstrip antennas", Proc. IEEE, vol. 80, no. 1, pp. 79-91, Jan. 1992.
15.
R. J. Mailloux, Phased Array Antenna Handbook, Norwood, MA, USA:Artech House, pp. 84-87, 2005.
16.
A. Nafe, M. Sayginer, K. Kibaroglu and G. M. Rebeiz, "\$2times64\$ dual-polarized dual-beam single-aperture 28 GHz phased array with high cross-polarization rejection for 5G polarization MIMO ", IEEE MTT-S Int. Microw. Symp. Dig., pp. 484-487, Jun. 2019.
17.
M. Mirmozafari, G. Zhang, C. Fulton and R. J. Doviak, "Dual-polarization antennas with high isolation and polarization purity: A review and comparison of cross-coupling mechanisms", IEEE Antennas Propag. Mag., vol. 61, no. 1, pp. 50-63, Feb. 2019.
18.
P. K. Mishra, D. R. Jahagirdar and G. Kumar, "A review of broadband dual linearly polarized microstrip antenna designs with high isolation [education column]", IEEE Antennas Propag. Mag., vol. 56, no. 6, pp. 238-251, Dec. 2014.
19.
K. Ghorbani and R. B. Waterhouse, "Dual polarized wide-band aperture stacked patch antennas", IEEE Trans. Antennas Propag., vol. 52, no. 8, pp. 2171-2175, Aug. 2004.
20.
S. D. Targonski and D. M. Pozar, "Design of wideband circularly polarized aperture-coupled microstrip antennas", IEEE Trans. Antennas Propag., vol. 41, no. 2, pp. 214-220, Feb. 1993.
21.
C.-Y.-D. Sim, C.-C. Chang and J.-S. Row, "Dual-feed dual-polarized patch antenna with low cross polarization and high isolation", IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3321-3324, Oct. 2009.
22.
T. Chi, J. S. Park, S. Li and H. Wang, "A millimeter-wave polarization-division-duplex transceiver front-end with an on-chip multifeed self-interference-canceling antenna and an all-passive reconfigurable canceller", IEEE J. Solid-State Circuits, vol. 53, no. 12, pp. 3628-3639, Dec. 2018.
23.
C. Thakkar, A. Chakrabarti, S. Yamada, D. Choudhury, J. Jaussi and B. Casper, "A 42.2-Gb/s 4.3-pJ/b 60-GHz digital transmitter with 12-b/symbol polarization MIMO", IEEE J. Solid-State Circuits, vol. 54, no. 12, pp. 3565-3576, Dec. 2019.
24.
J. Ruze, "The effect of aperture errors on the antenna radiation pattern", Il Nuovo Cimento, vol. 9, no. S3, pp. 364-380, Mar. 1952.
25.
R. J. Mailloux, Phased Array Antenna Handbook, Norwood, MA, USA:Artech House, 2018.
26.
J. L. Allen, "The theory of array antennas (with emphasis on radar applications)", Jul. 1963.
27.
R. C. Hansen, Phased Array Antennas, Hoboken, NJ, USA:Wiley, 1998.
28.
K. Kibaroglu, M. Sayginer, T. Phelps and G. M. Rebeiz, "A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8–12-Gb/s 5G link at 300 meters without any calibration", IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5796-5811, Dec. 2018.
29.
M. Vigilante, E. McCune and P. Reynaert, "To EVM or two EVMs?: An answer to the question", IEEE Solid State Circuits Mag., vol. 9, no. 3, pp. 36-39, 2017.
30.
H.-T. Zhang, W. Wang, M.-P. Jin and X.-P. Lu, "A dual-polarized array antena for on-the-move applications in Ku-band", Proc. IEEE-APS Topical Conf. Antennas Propag. Wireless Commun. (APWC), pp. 5-8, Sep. 2016.

Contact IEEE to Subscribe

References

References is not available for this document.