Loading [MathJax]/extensions/MathZoom.js
On the Mechanical Power Output Comparisons of Cone Dielectric Elastomer Actuators | IEEE Journals & Magazine | IEEE Xplore

On the Mechanical Power Output Comparisons of Cone Dielectric Elastomer Actuators


Abstract:

The emerging demand for bioinspired soft robotics requires novel soft actuators whose performance exceeds conventional rigid ones. Dielectric elastomer actuators (DEAs) a...Show More

Abstract:

The emerging demand for bioinspired soft robotics requires novel soft actuators whose performance exceeds conventional rigid ones. Dielectric elastomer actuators (DEAs) are a promising soft actuation technology with large actuation strain and fast response. Cone DEAs are one of the most widely adopted DEA configurations for their compact structure and large force/stroke output with several configuration variations developed in recent years. By driving at a resonant frequency, the cone DEAs show a significant amplification in their power outputs, which demonstrates their suitability for highly dynamic robotic applications. However, it is still unclear how the payload conditions could affect the power outputs of cone DEAs and no work has compared the output performance of different variations of cone configurations. In this article, by considering conical configuration DEAs with generalized dissipative payloads, we conduct an extensive study on the effects of payload conditions on the power outputs of the cone DEA family. Additionally, we benchmark the performance of different cone DEA configurations and illustrate the fundamental principles behind these output patterns. The findings reported in this article establish guidelines for designing high-performance cone DEA actuators.
Published in: IEEE/ASME Transactions on Mechatronics ( Volume: 26, Issue: 6, December 2021)
Page(s): 3151 - 3162
Date of Publication: 26 January 2021

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Soft robotics is an emerging research field that seeks to develop biologically inspired soft or partially soft robots utilizing compliant materials instead of rigid components in conventional robots. Soft robots have the potential to be more robust, adaptable, and safer to interact with humans and environments [1]. The growing applications of soft robotics demand novel compliant actuation technologies beyond conventional rigid actuators. Dielectric elastomer actuators (DEAs) are promising soft actuators which possess the advantages of large actuation strains, inherent compliance, and programmable actuations [2].

Select All
1.
D. Rus and M. T. Tolley, "Design fabrication and control of soft robots", Nature, vol. 521, no. 7553, pp. 467-475, 2015.
2.
R. Pelrine, R. Kornbluh, Q. Pei and J. Joseph, "High-speed electrically actuated elastomers with strain greater than 100%", Science, vol. 287, no. 5454, pp. 836-839, 2000.
3.
J. P. L. Lucking Bigué and J. S. Plante, "Experimental study of dielectric elastomer actuator energy conversion efficiency", IEEE/ASME Trans. Mechatron., vol. 18, no. 1, pp. 169-177, Feb. 2013.
4.
W. Kaal and S. Herold, "Electroactive polymer actuators in dynamic applications", IEEE/ASME Trans. Mechatron., vol. 16, no. 1, pp. 24-32, Feb. 2011.
5.
R. Sarban, B. Lassen and M. Willatzen, "Dynamic electromechanical modeling of dielectric elastomer actuators with metallic electrodes", IEEE/ASME Trans. Mechatron., vol. 17, no. 5, pp. 960-967, Oct. 2012.
6.
H. Zhao, A. M. Hussain, M. Duduta, D. M. Vogt, R. J. Wood and D. R. Clarke, "Compact dielectric elastomer linear actuators", Adv. Funct. Mater., vol. 28, no. 42, 2018.
7.
Y. Chen et al., "Controlled flight of a microrobot powered by soft artificial muscles", Nature, vol. 575, pp. 324-329, 2019.
8.
C. Tang, B. Li, H. Fang, Z. Li and H. Chen, "A speedy amphibian robotic cube: Resonance actuation by a dielectric elastomer", Sensors Actuators A Phys., vol. 270, pp. 1-7, 2018.
9.
T. Li et al., "Fast-moving soft electronic fish", Sci. Adv., vol. 3, no. 4, pp. 1-8, 2017.
10.
G. Gu, J. Zou, R. Zhao, X. Zhao and X. Zhu, "Soft wall-climbing robots", Sci. Robot., vol. 3, no. 25, 2018.
11.
X. Ji et al., "An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators", Sci. Robot., vol. 4, 2019.
12.
W. Li, W. Zhang, H. Zou, Z. Peng and G. Meng, "A fast rolling soft robot driven by dielectric elastomer", IEEE/ASME Trans. Mechatron., vol. 23, no. 4, pp. 1630-1640, Aug. 2018.
13.
U. Gupta, Y. Wang, H. Ren and J. Zhu, "Dynamic modeling and feedforward control of jaw movements driven by viscoelastic artificial muscles", IEEE/ASME Trans. Mechatron., vol. 24, no. 1, pp. 25-35, Feb. 2019.
14.
A. T. Conn and J. Rossiter, "Towards holonomic electro-elastomer actuators with six degrees of freedom", Smart Mater. Struct., vol. 21, no. 3, 2012.
15.
S. Hau, G. Rizzello and S. Seelecke, "A novel dielectric elastomer membrane actuator concept for high-force applications", Extreme Mech. Lett., vol. 23, pp. 24-28, 2018.
16.
S. Hau, A. York, G. Rizzello and S. Seelecke, "Performance prediction and scaling laws of circular dielectric elastomer membrane actuators", J. Mech. Des., vol. 140, no. 11, 2018.
17.
M. Hodgins, G. Rizzello, D. Naso, A. York and S. Seelecke, "An electro-mechanically coupled model for the dynamic behavior of a dielectric electro-active polymer actuator", Smart Mater. Struct., vol. 23, no. 10, 2014.
18.
G. Rizzello, M. Hodgins, D. Naso, A. York and S. Seelecke, "Dynamic modeling and experimental validation of an annular dielectric elastomer actuator with a biasing mass", J. Vib. Acoust., vol. 137, no. 1, 2015.
19.
M. Hodgins, A. York and S. Seelecke, "Experimental comparison of bias elements for out-of-plane DEAP actuator system", Smart Mater. Struct., vol. 22, no. 9, 2013.
20.
X. Li, W. Li, W. Zhang, H. Zou, Z. Peng and G. Meng, "Magnetic force induced tristability for dielectric elastomer actuators", Smart Mater. Struct., vol. 26, no. 10, 2017.
21.
G. Rizzello, M. Hodgins, D. Naso, A. York and S. Seelecke, "Modeling of the effects of the electrical dynamics on the electromechanical response of a DEAP circular actuator with a mass-spring load", Smart Mater. Struct., vol. 24, no. 9, 2015.
22.
J. Zou, G. Y. Gu and L. M. Zhu, "Open-loop control of creep and vibration in dielectric elastomer actuators with phenomenological models", IEEE/ASME Trans. Mechatron., vol. 22, no. 1, pp. 51-58, Feb. 2017.
23.
C. Cao, T. L. Hill, A. T. Conn, B. Li and X. Gao, "Nonlinear dynamics of a magnetically coupled dielectric elastomer actuator", Phys. Rev. Appl., vol. 12, no. 4, 2019.
24.
Z. Ye and Z. Chen, "Modeling and control of a 2-DOF dielectric elastomer diaphragm actuator", IEEE/ASME Trans. Mechatron., vol. 24, no. 1, pp. 218-227, Feb. 2019.
25.
H. Jung, P. T. Hoang, H. Phung, T. D. Nguyen, C. T. Nguyen and H. R. Choi, "Development of an insect-inspired hexapod robot actuated by soft actuators", J. Mech. Robot., vol. 10, no. 6, 2018.
26.
C. Cao, X. Gao and A. T. Conn, "A magnetically coupled dielectric elastomer pump for soft robotics", Adv. Mater. Technol., vol. 4, no. 8, 2019.
27.
Y. Zhao, Q. Guo, S. Wu, G. Meng and W. Zhang, "Design and experimental validation of an annular dielectric elastomer actuator for active vibration isolation", Mech. Syst. Signal Process., vol. 134, 2019.
28.
P. Linnebach, F. Simone, G. Rizzello and S. Seelecke, "Development manufacturing and validation of a dielectric elastomer membrane actuator–driven contactor", J. Intell. Mater. Syst. Struct., vol. 30, no. 4, pp. 636-648, 2019.
29.
C. Tang, W. Ma, B. Li, M. Jin and H. Chen, "Cephalopod-inspired swimming robot using dielectric elastomer synthetic jet actuator", Adv. Eng. Mater., vol. 22, 2020.
30.
P. Linnebach, G. Rizzello, S. Seelecke and S. Seelecke, "Design and validation of a dielectric elastomer membrane actuator driven pneumatic pump", Smart Mater. Struct., vol. 29, no. 7, 2020.
Contact IEEE to Subscribe

References

References is not available for this document.