Abstract:
Chip-embedded mm-wave antenna-integrated modules are demonstrated, for the first time, on panel-scale ultra-thin glass substrates, for high-speed 5G communication standar...Show MoreMetadata
Abstract:
Chip-embedded mm-wave antenna-integrated modules are demonstrated, for the first time, on panel-scale ultra-thin glass substrates, for high-speed 5G communication standards in the n257 band (26.5 – 29.5 GHz) defined by 3GPP. Co-packaging of amplifiers, filters, and antennas with minimal package parasitics is the key to realize mm-wave package systems. Parasitics arise from on-package and chip-to-package interconnects. This paper focuses on reduced chip-to-package losses and implementation of filters and antennas with chip-embedding structures in glass substrates. To demonstrate the benefits of glass-panel embedding (GPE) for 5G communications, the interconnect losses are benchmarked with the C4-bump based flip-chip technique. The electrical performance shows that the chip-embedding structure with a glass substrate lead to 3X lower insertion loss from chip to antenna than the flip-chip assembly method with C4 bumps. This reduced chip-to-antenna insertion loss brings about the enhanced efficiency and gain of the patch antennas integrated on top of the glass substrates. The process development and electrical performance are benchmarked with emerging 5G substrate technologies such as fan-out wafer level packaging.
Date of Conference: 03-30 June 2020
Date Added to IEEE Xplore: 05 August 2020
ISBN Information: