Loading [MathJax]/extensions/MathZoom.js
Comparisons of Torque Performance in Surface-Mounted PM Vernier Machines With Different Stator Tooth Topologies | IEEE Journals & Magazine | IEEE Xplore

Comparisons of Torque Performance in Surface-Mounted PM Vernier Machines With Different Stator Tooth Topologies


Abstract:

Permanent magnet vernier (PMV) machines, as one of the flux modulation machines, have gained considerable attention due to inherent high torque density and low torque rip...Show More

Abstract:

Permanent magnet vernier (PMV) machines, as one of the flux modulation machines, have gained considerable attention due to inherent high torque density and low torque ripple. This paper mainly investigates the torque performance of PMV machines with different stator tooth topologies. First, it begins with the theoretical analysis of surface-mounted PMV machines, which has a generic number of flux modulation poles (FMPs), PM poles, and armature poles. Then, the expression of flux linkage, back-electromotive force (EMF) and electromagnetic torque are derived successively, where the equivalent winding factor is proposed and defined to evaluate the flux modulation of stator auxiliary teeth and multi-harmonics coupling effect. Next, the back EMF, torque, power factor, flux-weakening capability, and PM demagnetization of PMV machines with different number of stator teeth are analyzed and compared. The final results of theoretical analysis and finite-element analysis can match well. Meanwhile, the non-uniform distribution of FMPs for increasing the average torque is first proposed and analyzed. A parameter K titled as FMP ratio is defined to evaluate the relationship among the angles among FMPs, the influence of the variation of K on the back EMF and torque is deeply explored and analyzed. Besides, the optimal range of K is carefully validated, which will help to optimize the design parameters more conveniently in the future.
Published in: IEEE Transactions on Industry Applications ( Volume: 55, Issue: 4, July-Aug. 2019)
Page(s): 3671 - 3684
Date of Publication: 01 May 2019

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

In recent years, permanent magnet (PM) direct-drive machines have gained considerable attention due to competitive torque density, high transmission efficiency, and low vibration noise [1], [2]. However, the higher torque demand always leads to larger machine size and inevitable material consumption [3]. At present, the flux-modulation machines with larger torque density have emerged based on the so-called flux-modulation effect.

Select All
1.
J. Li, K. T. Chau and W. Li, "Harmonic analysis and comparison of permanent magnet vernier and magnetic-geared machines", IEEE Trans. Magn., vol. 47, no. 10, pp. 3649-3652, Oct. 2011.
2.
S. Niu, S. L. Ho, W. N. Fu and L. L. Wang, "Quantitative comparison of novel vernier permanent magnet machines", IEEE Trans. Magn., vol. 46, no. 6, pp. 2032-2035, Jun. 2010.
3.
X. L. Li, K. T. Chau and M. Cheng, "Comparative analysis and experimental verification of an effective permanent-magnet vernier machine", IEEE Trans. Magn., vol. 51, no. 7, Jul. 2015.
4.
D. W. Li, R. H. Qu and J. Li, "Topologies and analysis of flux-modulation machines", Proc. IEEE Energy Convers. Congr. Expo., pp. 2153-2160, 2015.
5.
R. P. Deodhar, S. Andersson, I., Boldea and T. J. E. Miller, "The flux-reversal machine: A new brushless doubly-salient permanent-magnet machine", IEEE Trans. Ind. Appl., vol. 33, no. 4, pp. 925-934, Aug. 1997.
6.
C. Wang, S. A. Nasar and I. Boldea, "Three-phase flux reversal machine", Proc. IEE—Elect. Power Appl, vol. 146, no. 2, pp. 139-146, Mar. 1999.
7.
C. X. Wang, I. Boldea and S. A. Nasar, "Characterization of three phase flux reversal machine as an automotive generator", IEEE Trans. Energy Convers., vol. 16, no. 1, pp. 74-80, Mar. 2001.
8.
I. Boldea, J. C. Zhang and S. A Nasar, "Theoretical characterization of flux reversal machine in low-speed servo drives—The pole-PM configuration", IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1549-1557, Dec. 2002.
9.
I. Boldea, L. Tutelea and M Topor, "Theoretical characterization of three phase flux reversal machine with rotor-PM flux concentration", Proc. Int. Conf. Optim. Elect. Electron. Equip, pp. 472-476, 2012.
10.
J. T. Chen, Z. Q. Zhu, S. Iwasaki and R. P. Deodhar, "Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines", IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1681-1691, Aug. 2011.
11.
J. T. Chen, Z. Q. Zhu, S. Iwasaki and R. P. Deodhar, "A novel E-core switched-flux PM brushless AC machine", IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1273-1282, May 2011.
12.
W. Z. Fei, P. C. K. Luk, J. X. Shen, Y. Wang and M. J. Jin, "A novel permanent-magnet flux switching machine with an outer-rotor configuration for in-wheel light traction applications", IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1496-1506, Sep. 2012.
13.
T. Raminosoa, C. Gerada and M. Galea, "Design considerations for a fault-tolerant flux-switching permanent-magnet machine", IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2818-2825, Jul. 2011.
14.
R. Qu, D. Li and J. Wang, "Relationship between magnetic gears and vernier machines", Proc. Int. Conf. Elect. Mach. Syst., pp. 1-6, Aug. 2011.
15.
G. Kronacher, "Design performance and application of the Vernier resolver", Bell Syst. Tech. J., vol. 36, no. 6, pp. 1487-1500, 1957.
16.
C. H. Lee, "Vernier motor and its design", IEEE Trans. Power Appl. Syst.., vol. PAS-82, no. 66, pp. 343-349, Jun. 1963.
17.
A. Ishizaki, T. Tanaka and K. Takahashi, "Theory and optimum design of PM Vernier motor", Proc. 7th Int. Conf. Elect. Mach. Drives, pp. 208-212, 1995.
18.
B. Kim and T. A. Lipo, "Operation and design principles of a PM vernier motor", IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3656-3663, Nov./Dec. 2014.
19.
A., Toba and T. A. Lipo, "Generic torque-maximizing design methodology of surface permanent-magnet vernier machine", IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1539-1546, Nov./Dec. 2000.
20.
A., Toba and T. A. Lipo, "Novel dual-excitation permanent magnet vernier machine", Proc. Conf. Rec. IEEE 34th Ind. Appl. Soc. Annu. Meeting, pp. 2539-2544, 1999.
21.
T. J. Zou, D. W. Li, R. H. Qu, D. Jiang and J. Li, "Advanced high torque density PM vernier machine with multiple working harmonics", IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5295-5304, Nov./Dec. 2017.
22.
T. J. Zou, X. Han, D. Jiang, R. H. Qu and D. W. Li, "Inductance evaluation and sensorless control of a concentrated winding PM vernier machine", IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2175-2184, May 2018.
23.
T. J. Zou, D. W. Li, R. H. Qu, J. Li and D. Jiang, "Analysis of a dual-rotor toroidal-winding axial-flux vernier permanent magnet machine", IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1920-1930, May 2017.
24.
R. Zhang, J. Li, R. H. Qu and D. W. Li, "Analysis and design of triple-rotor axial-flux spoke-array vernier permanent magnet machines", IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 244-253, Jan. 2018.
25.
D. W. Li, T. J. Zou, R. H. Qu and D. Jiang, "Analysis of fractional-slot concentrated winding PM vernier machines with regular open-slot stators", IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1320-1330, Mar. 2018.
26.
Y. Zhang, H. Y. Lin, S. H. Fang, Y. K. Huang and H. Yang, "Air-gap flux density characteristics comparison and analysis of permanent magnet vernier machines with different rotor topologies", IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1-5, Jun. 2016.
27.
M. Raza, W. Zhao, T. A. Lipo and B. I. Kwon, "Performance comparison of dual airgap and single airgap spoke type vernier permanent magnet machines", Proc. IEEE Conf. Electromagn. Field Comput., pp. 2320-2326, 2016.
28.
J. Q. Yang et al., "Quantitative comparison for fractional-slot concentrated-winding configurations of permanent-magnet vernier machines", IEEE Trans. Magn., vol. 49, no. 7, pp. 3826-3829, Jul. 2013.
29.
Z. Q. Zhu, D. Howe, E. Bolte and B. Ackermann, "Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open circuit field", IEEE Trans. Magn., vol. 29, no. 1, pp. 124-135, Jan. 1993.
30.
Y. Yu, F. Chai, Y. Pei and L. Chen, "Torque characteristics comparison and analysis of surface-mounted permanent magnet vernier machines with different stator topologies", Proc. Int. Conf. Elect. Mach., pp. 2311-2317, 2018.
Contact IEEE to Subscribe

References

References is not available for this document.