Loading [MathJax]/extensions/MathMenu.js
Learning from one example through shared densities on transforms | IEEE Conference Publication | IEEE Xplore

Learning from one example through shared densities on transforms


Abstract:

We define a process called congealing in which elements of a dataset (images) are brought into correspondence with each other jointly, producing a data-defined model. It ...Show More

Abstract:

We define a process called congealing in which elements of a dataset (images) are brought into correspondence with each other jointly, producing a data-defined model. It is based upon minimizing the summed component-wise (pixel-wise) entropies over a continuous set of transforms on the data. One of the biproducts of this minimization is a set of transform, one associated with each original training sample. We then demonstrate a procedure for effectively bringing test data into correspondence with the data-defined model produced in the congealing process. Subsequently; we develop a probability density over the set of transforms that arose from the congealing process. We suggest that this density over transforms may be shared by many classes, and demonstrate how using this density as "prior knowledge" can be used to develop a classifier based on only a single training example for each class.
Date of Conference: 15-15 June 2000
Date Added to IEEE Xplore: 06 August 2002
Print ISBN:0-7695-0662-3
Print ISSN: 1063-6919
Conference Location: Hilton Head Island, SC

Contact IEEE to Subscribe

References

References is not available for this document.