Abstract:
For pt. I see ibid., vol. 47, no. 6 (June 2000). A numerical model for the stationary stress-induced leakage current (SILC) is presented, accounting for both electron and...Show MoreMetadata
Abstract:
For pt. I see ibid., vol. 47, no. 6 (June 2000). A numerical model for the stationary stress-induced leakage current (SILC) is presented, accounting for both electron and hole tunneling. Detailed comparisons against experimental results on both n- and p-channel devices highlight that the steady-state SILC is due to positively charged centers, with an energy level located in correspondence of the silicon bandgap. Electron-hole recombination at these sites dominates normal trap-assisted tunneling at low oxide fields, and successfully accounts for recently observed hole steady-state leakage. The contribution from neutral traps seems instead marginal. Based on this new picture, the impact of the recombination process on the leakage properties of ultrathin gate is also discussed.
Published in: IEEE Transactions on Electron Devices ( Volume: 47, Issue: 6, June 2000)
DOI: 10.1109/16.842972
References is not available for this document.
Select All
1.
D. A. Baglee and M. C. Smayling, "The effects of write/erase cycling on data loss in EEPROMs", IEDM Tech. Dig., pp. 624-626, 1985.
2.
K. Naruke, S. Taguchi and M. Wada, "Stress induced leakage current limiting to scale down EEPROM tunnel oxide thickness", IEDM Tech. Dig., pp. 424-427, 1988.
3.
M. Kato, "Read-disturb degradation mechanism due to electron trapping in the tunnel oxide for low-voltage flash memories", IEDM Tech. Dig., pp. 45-48, 1994.
4.
D. Ielmini, A. S. Spinelli, M. A. Rigamonti and A. L. Lacaita, "Modeling of SILC based on electron and hole tunneling̵Part I: Transient effects", IEEE Trans. Electron Devices, vol. 47, pp. 1258-1265, June 2000.
5.
G. H. Parker and C. A. Mead, "The effect of trapping states on tunneling in metal-semiconductor junctions", Appl. Phys. Lett., vol. 14, pp. 21-23, 1969.
6.
R. Moazzami and C. Hu, "Stress-induced current in thin silicon dioxide films", IEDM Tech. Dig., pp. 139-142, 1992.
7.
N. Matsukawa, S. Yamada, K. Amemiya and H. Hazama, "A hot hole-induced low-level leakage current in thin silicon dioxide films", IEEE Trans. Electron Devices, vol. 43, pp. 1924-1929, Nov. 1996.
8.
G. J. Hemink, K. Shimizu, S. Aritome and R. Shirota, "Trapped hole enhanced stress induced leakage current in NAND EEPROM tunnel oxides", Proc. IRPS, pp. 117-121, 1996.
9.
T. Wang, N.-K. Zous, J.-L. Lai and C. Huang, "Hot hole stress induced leakage current (SILC) transient in tunnel oxide", IEEE Electron Device Lett., vol. 19, pp. 411-413, Nov 1998.
10.
J. D. Bude, B. E. Weir and P. J. Silverman, "Explanation of stress-induced damage in thin oxides", IEDM Tech. Dig., pp. 179-182, 1998.
11.
I. C. Chen, "Substrate hole current and oxide breakdown", Appl. Phys. Lett., vol. 49, pp. 669-671, 1986.
12.
D. A. Buchanan, M. V. Fischetti and D. J. DiMaria, "Coulombic and neutral trapping centers in silicon dioxide", Phys. Rev. B, vol. 43, pp. 1471-1486, 1991.
13.
T. H. Ning, "Capture cross section and trap concentration of holes in silicon dioxide", J. Appl. Phys., vol. 47, pp. 1079-1081, 1976.
14.
J. M. Aitken and D. R. Young, "Electron trapping by radiation-induced charge in MOS devies", J. Appl. Phys., vol. 47, pp. 1196-1198, 1976.
15.
A. Meinertzhagen, "On positive charged defects annihilation and SILC decrease", Microelectron. Reliab., vol. 39, pp. 191-196, 1999.
16.
E. Rosenbaum and L. F. Register, "Mechanism of stress-induced leakage current in MOS capacitors", IEEE Trans. Electron Devices, vol. 44, pp. 317-323, Feb. 1997.
17.
K. Sakakibara, " Identification of stress-induced leakage current components and the corresponding trap models in SiO \$_2\$ films ", IEEE Trans. Electron Devices, vol. 44, pp. 2267-2273, June 1997.
18.
A. I. Chou, "Modeling of stress-induced leakage current in ultrathin oxides with the trap-assisted tunneling mechanism", Appl. Phys. Lett., vol. 70, pp. 3407-3409, 1997.
19.
S. Takagi, N. Yasuda and A. Toriumi, " A new \$I{hbox{--}}V\$ model for stress-induced leakage current including inelastic tunneling ", IEEE Trans. Electron Devices, vol. 46, pp. 348-354, Feb. 1999.
20.
D. J. DiMaria and E. Cartier, "Mechanism for stress-induced leakage currents in thin silicon dioxide films", J. Appl. Phys., vol. 78, pp. 3883-3894, 1995.
21.
A. Ghetti, E. Sangiorgi, T. W. Sorsch and I. Kizilyalli, " The role of native traps on the tunneling characteristics of ultra-thin ( \$1.5{hbox{--}}3\$ nm) oxides ", Microelectron. Eng., vol. 48, pp. 31-34, 1999.
22.
C. Chang, C. Hu and R. W. Brodersen, "Quantum yield of electron impact ionization in silicon", J. Appl. Phys., vol. 57, pp. 302-309, 1985.
23.
S. Takagi, N. Yasuda and A. Toriumi, "Experimental evidence of inelastic tunneling in stress-induced leakage current", IEEE Trans. Electron Devices, vol. 46, pp. 335-341, Feb. 1999.
24.
S. M. Gladstone and D. J. Dumin, "Thickness dependence of thin oxide wearout", Solid-State Electron., vol. 42, pp. 317-324, 1998.
25.
R. Degraeve, "New insight in the relation between electron trap generation and the statistical properties of oxide breakdown", IEEE Trans. Electron Devices, vol. ED-45, pp. 904-911, Apr. 1998.
26.
K. Lai, " ̶Turn-around̶ effects of stress-induced leakage current of ultrathin N \$_2\$ O-annealed oxides ", Appl. Phys. Lett., vol. 67, pp. 673-675, 1995.
27.
B. E. Weir, "Ultra-thin gate dielectrics: They break down but do they fail?", IEDM Tech. Dig., pp. 73-76, 1997.
28.
P. E. Nicollian, "Low voltage stress-induced-leakage-current in ultrathin gate oxides", Proc. IRPS, pp. 400-404, 1999.