Loading [MathJax]/extensions/MathZoom.js
HIRAD Brightness Temperature Image Geolocation Validation | IEEE Journals & Magazine | IEEE Xplore

HIRAD Brightness Temperature Image Geolocation Validation


Abstract:

The Hurricane Imaging Radiometer (HIRAD) is an airborne microwave radiometer developed to provide wide-swath hurricane surface wind speed and rain rate imagery for scient...Show More

Abstract:

The Hurricane Imaging Radiometer (HIRAD) is an airborne microwave radiometer developed to provide wide-swath hurricane surface wind speed and rain rate imagery for scientific research. This letter presents a geometric evaluation of the brightness temperature (Tb) images produced by HIRAD for high-contrast land/water targets. Methodologies used to validate geolocation accuracy and spatial resolution are discussed, and results are presented to provide quantitative pixel geolocation accuracy and the effective image spatial resolution of the Tb image.
Published in: IEEE Geoscience and Remote Sensing Letters ( Volume: 14, Issue: 11, November 2017)
Page(s): 1908 - 1912
Date of Publication: 06 October 2017

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

The objective of the airborne Hurricane Imaging Radiometer (HIRAD) is to provide 2-D of hurricane surface wind speed and rain rate fields for scientific research. This remote sensor, developed by the NASA Marshall Space Flight Center (MSFC), is a microwave synthetic thinned aperture radiometer, which simultaneously measures the ocean brightness temperature (Tb) at 4 C-band frequencies. From these measurements, it is possible to retrieve hurricane force ocean surface winds in the presence of tropical rains with 2–6 km spatial resolution over a wide swath of typically 60 km (from a 20-km aircraft altitude).

Select All
1.
E. W. Uhlhorn, P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell and A. S. Goldstein, "Hurricane surface wind measurements from an operational stepped frequency microwave radiometer", Monthly Weather Rev., vol. 135, pp. 3070-3085, Sep. 2007.
2.
M. C. Bailey et al., "Multi-frequency synthetic thinned array antenna for the hurricane imaging radiometer", IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2562-2570, Aug. 2010.
3.
C. S. Ruf, C. T. Swift, A. B. Tanner and D. M. Le Vine, "Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth", IEEE Trans. Geosci. Remote Sens., vol. 26, no. 5, pp. 597-611, Sep. 1988.
4.
C. Ruf, J. B. Roberts, S. Biswas, M. James and T. Miller, "Calibration and image reconstruction for The Hurricane Imaging Radiometer (HIRAD)", Proc. IEEE Int. Geosci. Remote Sens. Symp., pp. 4641-4643, Jul. 2012.
5.
R. A. Amarin et al., "Hurricane wind speed measurements in rainy conditions using the airborne Hurricane Imaging Radiometer (HIRAD)", IEEE Trans. Geosci. Remote Sens., vol. 50, no. 1, pp. 180-192, Jan. 2012.
6.
G. A. Poe and R. W. Conway, "A study of the geolocation errors of the Special Sensor Microwave/Imager (SSM/I)", IEEE Trans. Geosci. Remote Sens., vol. 28, no. 5, pp. 791-799, Sep. 1990.
7.
W. E. Purdy, P. W. Gaiser, G. A. Poe, E. A. Uliana, T. Meissner and F. J. Wentz, "Geolocation and pointing accuracy analysis for the WindSat sensor", IEEE Trans. Geosci. Remote Sens., vol. 44, no. 3, pp. 496-505, Mar. 2006.
8.
G. A. Poe, E. A. Uliana, B. A. Gardiner, T. E. vonRentzell and D. B. Kunkee, "Geolocation error analysis of the special sensor microwave imager/sounder", IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 913-922, Apr. 2008.
9.
B. Clymer et al., "Microwave radiometer (MWR) beam-pointing validation for the Aquarius/SAC-D mission", Proc. 13th Specialist Meet. Microw. Radiometry Remote Sens. Environ. (MicroRad), pp. 221-225, 2014.
10.
S. F. El-Nimri, W. L. Jones, E. Uhlhorn, C. Ruf, J. Johnson and P. Black, "An improved C-band ocean surface emissivity model at hurricane-force wind speeds over a wide range of earth incidence angles", IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 641-645, Oct. 2010.
11.
National Centers for Environmental Information, 2016, [online] Available: https://www.ngdc.noaa.gov/mgg/shorelines.
12.
A. B. Tanner and C. T. Swift, "Calibration of a synthetic aperture radiometer", IEEE Trans. Geosci. Remote Sens., vol. 31, no. 1, pp. 257-267, Jan. 1993.

Contact IEEE to Subscribe

References

References is not available for this document.