Loading web-font TeX/Math/Italic
Comprehensive Capacitance–Voltage Simulation and Extraction Tool Including Quantum Effects for High-k on SixGe1−x and InxGa1−xAs: Part I—Model Description and Validation | IEEE Journals & Magazine | IEEE Xplore

Comprehensive Capacitance–Voltage Simulation and Extraction Tool Including Quantum Effects for High-k on SixGe1−x and InxGa1−xAs: Part I—Model Description and Validation


Abstract:

High-mobility alternative channel materials to silicon are critical to the continued scaling of MOS devices. The analysis of capacitance–voltage (C–V) measurements on the...Show More

Abstract:

High-mobility alternative channel materials to silicon are critical to the continued scaling of MOS devices. The analysis of capacitance–voltage (C–V) measurements on these new materials with high-k gate dielectrics is a critical technique to determine many important gate-stack parameters. While there are very useful C–V analysis tools available to the community, these tools are all limited in their applicability to alternative semiconductor channel MOS gate-stack analysis since they were developed for silicon. Here, we report on a new comprehensive C–V simulation and extraction tool, called CV Alternative Channel Extraction (ACE), that incorporates a wide range of semiconductors and dielectrics with the capability to implement customized gate stacks. Fermi–Dirac carrier statistics, nonparabolic bands, and quantum mechanical effects are all implemented with options to turn each of these off as the user desires. Interface state capacitance ( {C}_{\mathsf {it}} ) is implemented using a common model for systems like Si and Ge. A more complex {C}_{\mathsf {it}} model is also implemented for III–Vs that accurately captures frequency dispersion in accumulation that arises from tunneling. CV ACE enables extremely fast simulation and extraction and can accommodate measurements performed at variable temperatures and frequencies to allow for a more accurate extraction of interface state density ( {D}_{\mathsf {it}} ).
Published in: IEEE Transactions on Electron Devices ( Volume: 64, Issue: 9, September 2017)
Page(s): 3786 - 3793
Date of Publication: 21 July 2017

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

For current and future MOSFET technology, various alternative semiconductor channel materials are used or being considered to improve device performance, including Si-Ge [1], germanium [2]–[4], and III–V compound semiconductors [5]–[7]. These high-mobility channel materials, used in conjunction with high-k dielectrics [8] and metal gates may provide important advantages, leading to increased device density and performance while driving down the cost of manufacturing and energy consumption. However, characterizing experimentally fabricated gate stacks on these new channel materials is challenging.

Select All
1.
C. N. Chleirigh et al., "Thickness dependence of hole mobility in ultrathin SiGe-channel p-MOSFETs", IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2687-2694, Oct. 2008.
2.
A. Delabie et al., " Effective electrical passivation of Ge(100) for high- k gate dielectric layers using germanium oxide ", Appl. Phys. Lett., vol. 91, no. 8, pp. 082904, Aug. 2007.
3.
D. Kuzum et al., "Ge-interface engineering with ozone oxidation for low interface-state density", IEEE Electron Device Lett., vol. 29, no. 4, pp. 328-330, Apr. 2008.
4.
R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka and S. Takagi, " Al 2 O 3 /GeO x /Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation ", Appl. Phys. Lett., vol. 98, no. 11, pp. 112902, Mar. 2011.
5.
G. Doornbos and M. Passlack, "Benchmarking of III–V n-MOSFET maturity and feasibility for future CMOS", IEEE Electron Device Lett., vol. 31, no. 10, pp. 1110-1112, Oct. 2010.
6.
Y. Xuan, Y. Q. Wu and P. D. Ye, "High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm", IEEE Electron Device Lett., vol. 29, no. 4, pp. 294-296, Apr. 2008.
7.
P. D. Ye, "Main determinants for III–V metal-oxide-semiconductor field-effect transistors (invited)", J. Vac. Sci. Technol. A Vac. Surf. Films, vol. 26, no. 4, pp. 697-704, Jul. 2008.
8.
E. P. Gusev, V. Narayanan and M. M. Frank, " Advanced high- \$kappa\$ dielectric stacks with polySi and metal gates: Recent progress and current challenges ", IBM J. Res. Develop., vol. 50, no. 4, pp. 387-410, Jul. 2006.
9.
J. R. Hauser and K. Ahmed, "Characterization of ultra-thin oxides using electrical C-V and I-V measurements", Proc. AIP Conf., vol. 449, pp. 235-239, Nov. 1998.
10.
T. Ando, A. B. Fowler and F. Stern, "Electronic properties of two-dimensional systems", Rev. Mod. Phys., vol. 54, no. 2, pp. 437-672, Apr. 1982.
11.
M. J. van Dort, P. H. Woerlee and A. J. Walker, "A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions", Solid-State Electron., vol. 37, no. 3, pp. 411-414, Mar. 1994.
12.
S. A. Hareland et al., "A computationally efficient model for inversion layer quantization effects in deep submicron N-channel MOSFETs", IEEE Trans. Electron Devices, vol. 43, no. 1, pp. 90-96, Jan. 1996.
13.
A. Abramo, A. Cardin, L. Selmi and E. Sangiorgi, "Two-dimensional quantum mechanical simulation of charge distribution in silicon MOSFETs", IEEE Trans. Electron Devices, vol. 47, no. 10, pp. 1858-1863, Oct. 2000.
14.
R. Lake, G. Klimeck, R. C. Bowen and D. Jovanovic, "Single and multiband modeling of quantum electron transport through layered semiconductor devices", J. Appl. Phys., vol. 81, no. 12, pp. 7845-7869, Jun. 1997.
15.
S.-H. Lo, D. A. Buchanan and Y. Taur, "Modeling and characterization of quantization polysilicon depletion and direct tunneling effects in MOSFETs with ultrathin oxides", IBM J. Res. Develop., vol. 43, no. 3, pp. 327-337, May 1999.
16.
W. Hänsch, T. Vogelsang, R. Kircher and M. Orlowski, " Carrier transport near the Si/SiO 2 interface of a MOSFET ", Solid-State Electron., vol. 32, no. 10, pp. 839-849, Oct. 1989.
17.
Y. Ma, L. Liu, Z. Yu and Z. Li, "Simplified method to investigate quantum mechanical effects in MOS structure inversion layer", IEEE Trans. Electron Devices, vol. 47, no. 6, pp. 1303-1305, Jun. 2000.
18.
W. Liu, X. Jin, Y. King and C. Hu, "An efficient and accurate compact model for thin-oxide-MOSFET intrinsic capacitance considering the finite charge layer thickness", IEEE Trans. Electron Devices, vol. 46, no. 5, pp. 1070-1072, May 1999.
19.
M. J. van Dort, P. H. Woerlee, A. J. Walker, C. A. H. Juffermans and H. Lifka, "Influence of high substrate doping levels on the threshold voltage and the mobility of deep-submicrometer MOSFETs", IEEE Trans. Electron Devices, vol. 39, no. 4, pp. 932-938, Apr. 1992.
20.
S. A. Hareland, S. Jallepalli, G. Chindalore, W. K. Shih, A. F. Tasch and C. M. Maziur, "A simple model for quantum mechanical effects in hole inversion layers in silicon PMOS devices", IEEE Trans. Electron Devices, vol. 44, no. 7, pp. 1172-1173, Jul. 1997.
21.
S. A. Hareland et al., "Computationally efficient models for quantization effects in MOS electron and hole accumulation layers", IEEE Trans. Electron Devices, vol. 45, no. 7, pp. 1487-1493, Jul. 1998.
22.
Z. Yu, R. W. Dutton and R. A. Kiehl, "Circuit/device modeling at the quantum level", IEEE Trans. Electron Devices, vol. 47, no. 10, pp. 1819-1825, Oct. 2000.
23.
Y.-C. King, H. Fujioka, S. Kamohara, K. Chen and C. Hu, "DC electrical oxide thickness model for quantization of the inversion layer in MOSFETs", Semicond. Sci. Technol., vol. 13, no. 8, pp. 963, 1998.
24.
Y. Yuan et al., " A distributed model for border traps in Al 2 O 3 -InGaAs MOS devices ", IEEE Electron Device Lett., vol. 32, no. 4, pp. 485-487, Apr. 2011.
25.
E. M. Vogel, C. A. Richter and B. G. Rennex, "A capacitance–voltage model for polysilicon-gated MOS devices including substrate quantization effects based on modification of the total semiconductor charge", Solid-State Electron., vol. 47, no. 9, pp. 1589-1596, Sep. 2003.
26.
E. Lind, Y.-M. Niquet, H. Mera and L.-E. Wernersson, "Accumulation capacitance of narrow band gap metal-oxide-semiconductor capacitors", Appl. Phys. Lett., vol. 96, no. 23, pp. 233507, 2010.
27.
D.W. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431-441, 1963.
28.
C.-H. Choi et al., "MOS C-V characterization of ultrathin gate oxide thickness (1.3–1.8 nm)", IEEE Electron Device Lett., vol. 20, no. 6, pp. 292-294, Jun. 1999.
29.
C. G. Broyden, "A class of methods for solving nonlinear simultaneous equations", Math. Comput., vol. 19, no. 92, pp. 577-593, 1965.
30.
QM CV Simulator, Berkeley, 2000, [online] Available: http://www-device.eecs.berkeley.edu/qmcv/.
Contact IEEE to Subscribe

References

References is not available for this document.