Loading [MathJax]/extensions/TeX/enclose.js
Multiobjective Optimization of Medium-Frequency Transformers for Isolated Soft-Switching Converters Using a Genetic Algorithm | IEEE Journals & Magazine | IEEE Xplore

Multiobjective Optimization of Medium-Frequency Transformers for Isolated Soft-Switching Converters Using a Genetic Algorithm


Abstract:

The main challenge of medium-frequency transformers is the number of design parameters, constraints and objectives, and the difficulty of handling them on a particular de...Show More

Abstract:

The main challenge of medium-frequency transformers is the number of design parameters, constraints and objectives, and the difficulty of handling them on a particular design. This paper presents a novel computer-aided optimal design for MF transformers using a multiobjective genetic algorithm, in particular the nondominated sorting genetic algorithm II. The proposed methodology has the aim of reaching the best MF transformer for a given power converter topology, by optimizing transformer efficiency, weight, and also, transformer leakage and magnetizing inductances at the same time. The proposed methodology and the optimal solutions are validated with the design and the development of two 10-kVA/500-V transformers considering two different topologies. Finally, some experimental measurements are presented so as to demonstrate the proposed models and the performance of built transformers.
Published in: IEEE Transactions on Power Electronics ( Volume: 32, Issue: 4, April 2017)
Page(s): 2995 - 3006
Date of Publication: 30 May 2016

ISSN Information:

References is not available for this document.

I. Introduction

Medium-frequency (MF) electronic transformers open up new possibilities for ac–ac and dc–dc conversion systems, characterized by high efficiency, small volume, low weight, and cost effective features. Thus, there is an obvious interest in developing this type of systems in various applications where space and weight restrictions are critical, like railway traction [1]– [8], offshore wind power [9], or electrical vehicles [10]–[12] . The railway electrical traction sector is currently the most important one, as MF transformers could be potentially used not only to replace on-board low-frequency (LF) bulky transformers in ac trains (50 or 16 2/3 Hz), but also as the key element of on-board dc–dc conversion systems. In this last application, transformer-based converters can be an interesting alternative to conventional topologies due to their high voltage transformation ratio and efficiency.

Select All
1.
M. Carpita, M. Marchesoni, M. Pellerin and D. Moser, "Multilevel converter for traction applications: Small-scale prototype tests results", IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2203-2212, May 2008.
2.
M. Steiner and H. Reinold, "Medium frequency topology in railway applications", Proc. 12th Eur. Conf. Power Electron. Appl., pp. 1-10, Sep. 2007.
3.
A. Rufer, N. Schibli, C. Chabert and C. Zimmermann, "Configurable front-end converters for multicurrent locomotives operated on 16 2’3 Hz ac and 3 kV dc systems", IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1186-1193, Sep. 2003.
4.
N. Hugo, P. Stefanutti and M. Pellerin, "Power electronics traction transformer", Proc. 12th Eur. Conf. Power Electron. Appl., pp. 1-10, Sep. 2007.
5.
B. Engel, M. Victor, G. Bachmann and A. Falk, "15 kV–16.7 Hz energy supply system with medium frequency transformer and 6.5 kV IGBTs in resonant operation", Proc. 10th Eur. Conf. Power Electron. Appl., Sep. 2003.
6.
L. Heinemann, "An actively cooled high power high frequency transformer with high insulation capability", Proc. 17th Annu. Appl. Power Electron. Conf. Expo., pp. 352-357, Mar. 2002.
7.
D. Dujic et al., "Power electronic traction transformer-low voltage prototype", IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5522-5534, Dec. 2013.
8.
T. Kjellqvist, S. Norrga, S. Ostlund and K. Ilves, "Thermal evaluation of a medium frequency transformer in a line side conversion system", Proc. 13th Eur. Conf. Power Electron. Appl., pp. 1-10, Sep. 2009.
9.
A. Prasai, J.-S. Yim, D. Divan, A. Bendre and S.-K. Sul, "A new architecture for offshore wind farms", IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1198-1204, May 2008.
10.
H. van Hoek, M. Neubert and R. De Doncker, "Enhanced modulation strategy for a three-phase dual active bridge-boosting efficiency of an electric vehicle converter", IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5499-5507, Dec. 2013.
11.
N. Kutkut, D. Divan, D. Novotny and R. Marion, "Design considerations and topology selection for a 120-kW IGBT converter for EV fast charging", IEEE Trans. Power Electron., vol. 13, no. 1, pp. 169-178, Jan. 1998.
12.
I. Villar, L. Mir, I. Etxeberria-Otadui, J. Colmenero, X. Agirre and T. Nieva, "Optimal design and experimental validation of a medium-frequency 400 kVA power transformer for railway traction applications", Proc. Energy Convers. Congr. Expo., pp. 684-690, Sep. 2012.
13.
S. Williams, P. Abetti and E. Magnusson, "Application of digital computers to transformer design", AIEE Trans. Power App. Syst. Part III, vol. 75, no. 3, pp. 728-735, 1956.
14.
P. Odessey, "Transformer design by computer", IEEE Trans. Manuf. Technol., vol. 3, no. 1, pp. 1-17, Jun. 1974.
15.
F. F. Judd and D. Kressler, "Design optimization of small low-frequency power transformers", IEEE Trans. Magn., vol. 13, no. 4, pp. 1058-1069, Aug. 1977.
16.
W. Hurley, W. Wolfle and J. Breslin, "Optimized transformer design: inclusive of high-frequency effects", IEEE Trans. Power Electron., vol. 13, no. 4, pp. 651-659, Jul. 1998.
17.
O. W. Andersen, "Optimized design of electric power equipment", IEEE Comput. Appl. Power, vol. 4, no. 1, pp. 11-15, Jan. 1991.
18.
L. Hui, H. Li, H. Bei and Y. Shunchang, "Application research based on improved genetic algorithm for optimum design of power transformers", Proc. Int. Conf. Electr. Mach. Syst., pp. 242-245, 2001.
19.
R. Jabr, "Application of geometric programming to transformer design", IEEE Trans. Magn., vol. 41, no. 11, pp. 4261-4269, Nov. 2005.
20.
E. Amoiralis, P. Georgilakis, M. Tsili and A. Kladas, "Global transformer optimization method using evolutionary design and numerical field computation", IEEE Trans. Magn., vol. 45, no. 3, pp. 1720-1723, Mar. 2009.
21.
H. Qin, J. Kimball and G. Venayagamoorthy, "Particle swarm optimization of high-frequency transformer", Proc. 36th Annu. Conf. Ind. Electron. Soc., 2010.
22.
C. Versele, O. Deblecker and J. Lobry, "Multiobjective optimal design of high frequency transformers using genetic algorithm", Proc. 13th Eur. Conf. Power Electron. Appl., pp. 1-10, 2009.
23.
C. Marxgut, J. Muhlethaler, F. Krismer and J. Kolar, "Multiobjective optimization of ultraflat magnetic components with PCB-integrated core", IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3591-3602, Jul. 2013.
24.
I. Villar, A. Garcia-Bediaga, U. Viscarret, I. Etxeberria-Otadui and A. Rufer, "Proposal and validation of medium-frequency power transformer design methodology", Proc. Energy Convers. Congr. Expo., Sep. 2011.
25.
A. Garcia-Bediaga, I. Villar, L. Mir, I. Etxeberria-Otadui and A. Rufer, "Novel multiobjective optimization of MF transformers for soft-switching converters using a genetic algorithm", Proc. Energy Convers. Congr. Expo., pp. 5368-5375, 2014.
26.
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, Apr. 2002.
27.
B. Sareni, J. Régnier and X. Roboam, "Recombination and self-adaptation in multi-objective genetic algorithms", Proc. 6th Int. Conf. Artif. Evol., pp. 115-126, 2003.
28.
I. Villar, "Multiphysical characterization of medium-frequency power electronic transformers", 2010.
29.
C. Steinmetz, "On the law of hysteresis", Amer. Inst. Electr. Eng. Trans., vol. 9, no. 9, pp. 3-64, 1892.
30.
K. Venkatachalam, C. Sullivan, T. Abdallah and H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only steinmetz parameters", Proc. IEEE Workshop Comput. Power Electron., pp. 36-41, 2002.

References

References is not available for this document.