Abstract:
In this paper the authors present a method for analytically calculating the distribution of photons detected in single photon emission computed tomography (SPECT) project...Show MoreMetadata
Abstract:
In this paper the authors present a method for analytically calculating the distribution of photons detected in single photon emission computed tomography (SPECT) projections. The technique is applicable to sources in homogeneous and nonhomogeneous media. The photon distribution (primary, first-, and second-order Compton scatter) is computed using a precalculated camera-dependent look-up table in conjunction with an attenuation map of the scattering object and a map of the activity distribution. The speed and accuracy of this technique is compared to that of Monte Carlo simulations. The cases considered are a point source in a homogeneous and also in a nonhomogeneous scattering medium, an extended source in a nonhomogeneous medium, and a homogeneous cylinder filled uniformly with activity. The method is quantitatively accurate and faithfully reproduces the spatial distribution of the unscattered and scattered photons. For comparable statistical precision in the peak of the calculated distribution, their approach can result in a gain in calculation time over Monte Carlo simulators. For point sources, the computation times are improved by a factor of 20-150. However, this gain depends on the source configuration, and calculation times become comparable for an 800 voxel source and are five times slower for a 55000 voxel source. The method also offers an increase in the speed of computation of higher order Compton scatter events over a similar analytical technique.
Published in: IEEE Transactions on Nuclear Science ( Volume: 45, Issue: 6, December 1998)
DOI: 10.1109/23.736199
References is not available for this document.
Select All
1.
I. Buvat, H. Benali, A. Todd-Pokropek and R. Di Paola, "Scatter correction in scintigraphy: The state of the art", Eur. J. Nucl. Med., vol. 21, pp. 675-694, 1994.
2.
I. Buvat, H. Benali, A. Todd-Pokropek and R. Di Paola, "Scatter correction in scintigraphy: The state of the art", Eur. J. Nucl. Med., vol. 21, pp. 675-694, 1994.
3.
C. E. Frey, Z. W. Ju and B. M. W. Tsui, "Modeling the scatter response function in inhomogeneous scattering media for SPECT", IEEE Trans. Nucl. Sci., vol. 41, pp. 1585-1595, 1994.
4.
C. E. Frey, Z. W. Ju and B. M. W. Tsui, "Modeling the scatter response function in inhomogeneous scattering media for SPECT", IEEE Trans. Nucl. Sci., vol. 41, pp. 1585-1595, 1994.
5.
F. Beekman and M. Viergever, "Fast SPECT simulation including object shape dependent scatter", IEEE Trans. Med. Imag., vol. 14, pp. 271-282, 1995.
6.
F. Beekman and M. Viergever, "Fast SPECT simulation including object shape dependent scatter", IEEE Trans. Med. Imag., vol. 14, pp. 271-282, 1995.
7.
M. Smith, "Modeling photon transport in nonuniform media for SPECT with a vectorized Monte Carlo code", Phys. Med. Biol., vol. 38, pp. 1459-1474, 1993.
8.
M. Smith, "Modeling photon transport in nonuniform media for SPECT with a vectorized Monte Carlo code", Phys. Med. Biol., vol. 38, pp. 1459-1474, 1993.
9.
D. Haynor, M. Kaplan, R. Miyaoka and T. Lewellen, "Multiwindow scatter correction techniques in single-photon imaging", Med. Phys., vol. 22, no. 12, pp. 2015-2024, 1995.
10.
D. Haynor, M. Kaplan, R. Miyaoka and T. Lewellen, "Multiwindow scatter correction techniques in single-photon imaging", Med. Phys., vol. 22, no. 12, pp. 2015-2024, 1995.
11.
S. J. Glick, D. J. deVries, D. S. Luo and M. A. King, "Distance dependent restoration filtering of dual photopeak window scatter compensated SPECT images", IEEE Trans. Nucl. Sci., vol. 41, pp. 2787-2792, 1994.
12.
S. J. Glick, D. J. deVries, D. S. Luo and M. A. King, "Distance-dependent restoration filtering of dual photopeak window scatter compensated SPECT images", IEEE Trans. Nucl. Sci., vol. 41, pp. 2787-2792, 1994.
13.
P. Msaki, "Position-dependent scatter response functions: Will they make a difference in SPECT conducted with homogeneous cylindrical phantoms?", Phys. Med. Biol., vol. 39, pp. 2319-2329, 1994.
14.
P. Msaki, "Position-dependent scatter response functions: Will they make a difference in SPECT conducted with homogeneous cylindrical phantoms?", Phys. Med. Biol., vol. 39, pp. 2319-2329, 1994.
15.
M. Smith and R. Jaszczak, "Generalized dual-energy-window scatter compensation in spatially varying media for SPECT", Phys. Med. Biol., vol. 39, pp. 531-546, 1994.
16.
M. Smith and R. Jaszczak, "Generalized dual-energy-window scatter compensation in spatially varying media for SPECT", Phys. Med. Biol., vol. 39, pp. 531-546, 1994.
17.
S. H. M. Wahand, L. R. van Elmbt and S. Pauwels, "Quantitation in SPECT using an effective model of the scattering", Phys. Med. Biol., vol. 39, pp. 719-734, 1994.
18.
S. H. M. Wahand, L. R. van Elmbt and S. Pauwels, "Quantitation in SPECT using an effective model of the scattering", Phys. Med. Biol., vol. 39, pp. 719-734, 1994.
19.
I. Buvat, M. Rodriguez-Villafuerte, A. Todd-Pokropek, H. Benali and R. DiPaola, "Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations", J. Nucl. Med., vol. 36, pp. 1476-1488, 1995.
20.
I. Buvat, M. Rodriguez-Villafuerte, A. Todd-Pokropek, H. Benali and R. DiPaola, "Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations", J. Nucl. Med., vol. 36, pp. 1476-1488, 1995.
21.
A. Welch, G. T. Gullberg, P. E. Christian and F. L. Datz, "A transmission-based scatter correction technique for SPECT in inhomogeneous media", Med. Phys., vol. 22, no. 10, pp. 1627-1635, 1995.
22.
A. Welch, G. T. Gullberg, P. E. Christian and F. L. Datz, "A transmission-based scatter correction technique for SPECT in inhomogeneous media", Med. Phys., vol. 22, no. 10, pp. 1627-1635, 1995.
23.
C. E. Floyd, R. J. Jaszczak and R. E. Coleman, "Inverse Monte Carlo: A unified reconstruction algorithm for SPECT", IEEE Trans. Nucl. Sci., vol. NS-32, pp. 3779-785, 1985.
24.
C. E. Floyd, R. J. Jaszczak and R. E. Coleman, "Inverse Monte Carlo: A unified reconstruction algorithm for SPECT", IEEE Trans. Nucl. Sci., vol. NS-32, pp. 3779-785, 1985.
25.
D. R. Haynor, R. L. Harrison, T. K. Lewellen, A. N. Bice, C. P. Anson, S. B. Gillispie, et al., "Improving the efficiency of emission tomography simulations using variance reduction techniques", IEEE Trans. Nucl. Sci., vol. 37, pp. 749-753, Apr. 1990.
26.
D. R. Haynor, R. L. Harrison, T. K. Lewellen, A. N. Bice, C. P. Anson, S. B. Gillispie, et al., "Improving the efficiency of emission tomography simulations using variance reduction techniques", IEEE Trans. Nucl. Sci., vol. 37, pp. 749-753, Apr. 1990.
27.
J. W. Beck, R. J. Jaszczak, R. E. Coleman, C. F. Starmer and L. W. Nolte, "Analysis of SPECT including scatter and attenuation using sophisticated Monte Carlo modeling methods", IEEE Trans Nucl. Sci., vol. 29, pp. 506-511, Feb. 1982.
28.
J. W. Beck, R. J. Jaszczak, R. E. Coleman, C. F. Starmer and L. W. Nolte, "Analysis of SPECT including scatter and attenuation using sophisticated Monte Carlo modeling methods", IEEE Trans Nucl. Sci., vol. 29, pp. 506-511, Feb. 1982.
29.
M. Ljungberg and S.-E. Strand, "A Monte Carlo program for the simulation of scintillation camera characteristics", Comp. Meth. Prog. Biomed., vol. 29, pp. 257-272, 1989.
30.
M. Ljungberg and S.-E. Strand, "A Monte Carlo program for the simulation of scintillation camera characteristics", Comp. Meth. Prog. Biomed., vol. 29, pp. 257-272, 1989.