Abstract:
The task of re-identifying a person that moves across cameras fields-of-view is a challenge to the community known as the person re-identification problem. State-of-the a...Show MoreMetadata
Abstract:
The task of re-identifying a person that moves across cameras fields-of-view is a challenge to the community known as the person re-identification problem. State-of-the art approaches are either based on direct modeling and matching of the human appearance or on machine learning-based techniques. In this work we introduce a novel approach that studies densely localized image dissimilarities in a low dimensional space and uses those to re-identify between persons in a supervised classification framework. To achieve the goal: i) we compute the localized image dissimilarity between a pair of images; ii) we learn the lower dimensional space of such localized image dissimilarities, known as the “local eigen-dissimilarities” (LEDs) space; iii) we train a binary classifier to discriminate between LEDs computed for a positive pair (images are for a same person) from the ones computed for a negative pair (images are for different persons). We show the competitive performance of our approach on two publicly available benchmark datasets.
Published in: IEEE Signal Processing Letters ( Volume: 22, Issue: 4, April 2015)