Loading web-font TeX/Main/Regular
A Method for Seeking Low-Redundancy Large Linear Arrays in Aperture Synthesis Microwave Radiometers | IEEE Journals & Magazine | IEEE Xplore

A Method for Seeking Low-Redundancy Large Linear Arrays in Aperture Synthesis Microwave Radiometers


Abstract:

For one-dimensional aperture synthesis microwave radiometers, the optimal placement of antenna elements in a low-redundancy linear array (LRLA) is difficult when large nu...Show More

Abstract:

For one-dimensional aperture synthesis microwave radiometers, the optimal placement of antenna elements in a low-redundancy linear array (LRLA) is difficult when large numbers of elements are involved. In this paper, the general structure of large LRLAs is summarized first, and then a novel stochastic optimization technique, ant colony optimization (ACO), is applied to the search for low redundancy arrays. By combining the general structure with the ACO procedure, an efficient method is proposed for a rapid exploration for optimal array configurations. Numerical studies show that the method can generate various large LRLAs with lower redundancy than the previous algorithms did and the computational cost is greatly reduced. Based on the method, several analytical patterns for LRLAs are further derived, which can yield various array configurations with very low redundancy in nearly zero computation time. Both the method and the resulting configurations can be utilized to facilitate antenna array design in synthetic aperture radiometers with high spatial resolution.
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 58, Issue: 6, June 2010)
Page(s): 1913 - 1921
Date of Publication: 29 March 2010

ISSN Information:

References is not available for this document.

I. Introduction

Interferometric aperture synthesis technique is an attractive means for improving spatial resolution in passive microwave remote sensing of the Earth [1]–[3]. Different spatial frequencies are sampled by cross-correlating antenna pairs with different separations, and all sampled spatial frequencies can then be inverted to estimate the original brightness distribution of a scene.

Select All
1.
C. S. Ruf, C. T. Swift, A. B. Tanner and D. M. Le Vine, "Interferometric synthetic aperturemicrowave radiometry for the remote sensing of the Earth", IEEE Trans. Geosci. Remote Sens., vol. 26, no. 5, pp. 597-611, Sep. 1988.
2.
A. S. Milman, "Sparse-aperture microwave radiometersfor Earth remote sensing", Radio Sci., vol. 23, no. 2, pp. 193-206, 1988.
3.
C. T. Swift, D. M. Le Vine and C. S. Ruf, "Aperture synthesis conceptsin microwave remote sensing of the Earth", IEEE Trans. Microw. Theory Tech., vol. 39, no. 12, pp. 1931-1935, Dec. 1991.
4.
C. S. Ruf, "Numerical annealing of low-redundancylinear arrays", IEEE Trans. Antennas Propag., vol. 41, no. 1, pp. 85-90, Jan. 1993.
5.
A. T. Moffet, "Minimum-redundancy linear arrays", IEEE Trans. Antennas Propag., vol. AP-16, no. 2, pp. 172-175, Mar. 1968.
6.
R. Butora and A. Camps, "Noise maps in aperture synthesis radiometricimages due to cross-correlation of visibility noise", Radio Sci., vol. 38, pp. 1067-1074, 2003.
7.
A. Camps, I. Corbella, J. Bara and F. A. Torres, "Radiometric sensitivity computation in aperturesynthesis interferometric radiometry", IEEE Trans. Geosci. Remote Sens., vol. 36, no. 2, pp. 680-685, Mar. 1998.
8.
M. Ishiguro, "Minimum redundancy linear arraysfor a large number of antennas", Radio Sci., vol. 15, pp. 1163-1170, 1980.
9.
J. Leech, "On the representation of 12ldotsn by differences", J. London Math. Soc., vol. 31, pp. 160-169, 1956.
10.
C. B. Haselgrove and J. Leech, "Note on restricted difference bases", J. London Math. Soc., vol. 32, pp. 228-231, 1957.
11.
P. Wild, "Difference basis systems", Discrete Math., vol. 63, pp. 81-90, 1967.
12.
J. Miller, "Difference bases three problems in additive number theory" in Computers in Number Theory, London:Academic Press, pp. 229-322, 1971.
13.
R. N. Bracewell, "Optimum spacings for radiotelescopes with unfilled apertures", Nat. Acad. Sci. Nat. Res. Council. Publ., vol. 1408, pp. 243-244, 1966.
14.
Y. Lee and S. U. Pillai, "An algorithm for optimal placementof sensor elements", Proc. IEEE ICASSP, vol. 5, pp. 2674-2677, 1988.
15.
K. A. Blanton and J. H. McClellan, "New search algorithm for minimumredundancy linear arrays", Proc. IEEE ICASSP, vol. 2, pp. 1361-1364, 1991.
16.
A. Camps, A. Cardama and D. Infantes, "Synthesis of large low-redundancylinear arrays", IEEE Trans. Antennas Propag., vol. 49, no. 12, pp. 1881-1883, Dec. 2001.
17.
M. Dorigo, V. Maniezzo and A. Colorni, "Ant system: Optimization bya colony of cooperating agents", IEEE Trans. Syst. Man Cybern. B, vol. 26, no. 1, pp. 29-41, Feb. 1996.
18.
M. Dorigo and T. Stutzle, Ant Colony Optimization, MA, Cambridge:MIT Press, 2004.
19.
T. Stutzle and H. H. Hoos, "Max-min ant system", Future Gener. Comp. Syst., pp. 889-914, 2000.
20.
L. Jun, L. Shijie, Z. Zuyin and H. Tiexia, "Methods for achieving linear arrays withminimum redundancy", J. Huazhong Univ. Sci. Tech., vol. 23, no. 5, pp. 64-69, May 1995.
21.
C. M. Coleman, E. J. Rothwell and J. E. Ross, "Investigation of simulatedannealing ant-colony optimization and genetic algorithm for self-structuringantennas", IEEE Trans. Antennas Propag., vol. 52, no. 4, pp. 1007-1014, Apr. 2004.
22.
M. Pastorino, "Stochastic optimization methodsapplied to microwave imaging: A review", IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 538-548, Mar. 2007.
23.
S. D. Bedrosian, "Nonuniform linear arrays: Graph-theoreticapproach to minimum redundancy", Proc. IEEE, vol. 74, no. 7, pp. 1040-1043, Jul. 1986.
24.
B. Wichmann, "A note on restricted differencebases", J. Lon. Math. Soc., vol. 38, pp. 465-466, 1963.
25.
D. Pearson, S. U. Pillai and Y. Lee, "An algorithm for near-optimal placementof sensor elements", IEEE Trans. Inform. Theory, vol. 36, no. 6, pp. 1280-1284, Nov. 1990.

Contact IEEE to Subscribe

References

References is not available for this document.