Abstract:
This paper presents a numerical model for the analysis of magneto-mechanical problems in magnetostrictive materials. The governing equations of these phenomena are solved...Show MoreMetadata
Abstract:
This paper presents a numerical model for the analysis of magneto-mechanical problems in magnetostrictive materials. The governing equations of these phenomena are solved simultaneously using a strong coupling model based on the finite element method. The magnetic force in magnetostrictive materials is calculated by a numerical model based on the local application of the virtual work principle. The variation of the permeability with the mechanical stress is taken into account. The strong coupling model is applied to a simple example and the results are compared with a weak coupling model.
Published in: IEEE Transactions on Magnetics ( Volume: 32, Issue: 3, May 1996)
DOI: 10.1109/20.497423
Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (17)
Select All
1.
Wenle Song, Yu Han, Fuyao Yang, Jing Pang, Lei Wang, Jianfei Cao, Siying Deng, "Magnetostrictive Vibration Characteristics of Amorphous Alloy Transformer With Three-Dimensional Wound Core", IEEE Access, vol.12, pp.43958-43967, 2024.
2.
Flyur Ismagilov, Viacheslav Vavilov, Denis Gusakov, Anton Mednov, Iskander Garipov, Igor' Kuznetsov, "Investigation of an energy converter with an amorphous alloy magnetic core for a 270 V generation channel of an aircraft, taking into account climatic, vibration and electromagnetic conditions", 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS), pp.624-628, 2021.
3.
Xian Zhang, Fengxian Wang, Xuejing Ni, Yanan Ren, Qingxin Yang, "Structure Electromagnetic Force Analysis of WPT System Under Fault Conditions", IEEE Access, vol.8, pp.152990-153000, 2020.
4.
Arto Poutala, Tuomas Kovanen, Lauri Kettunen, "Essential Measurements for Finite Element Simulations of Magnetostrictive Materials", IEEE Transactions on Magnetics, vol.54, no.1, pp.1-7, 2018.
5.
Iveta Tomčíková, Matej Bereš, Irena Kováčová, Viacheslav Melnykov, "Interaction between magnetic and stress field in ferromagnetic core of magnetoelastic pressure force sensor", 2017 International Conference on Modern Electrical and Energy Systems (MEES), pp.124-127, 2017.
6.
Shengnan Wu, Reanyuan Tang, Wenming Tong, Xueyan Han, "Analytical Model for Predicting Vibration Due to Magnetostriction in Axial Flux Permanent Magnet Machines With Amorphous Metal Cores", IEEE Transactions on Magnetics, vol.53, no.8, pp.1-8, 2017.
7.
V. V. Shinde, M. L. Kulkarni, "Design of silicon based magneto rheological nano-fluid", 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), pp.117-121, 2017.
8.
Hassan Ebrahimi, Yanhui Gao, Hiroshi Dozono, Kazuhiro Muramatsu, "Coupled Magneto-Mechanical Analysis in Isotropic Materials Under Multiaxial Stress", IEEE Transactions on Magnetics, vol.50, no.2, pp.285-288, 2014.
9.
Matija Javorski, Gregor Čepon, Janko Slavič, Miha Boltežar, "A Generalized Magnetostrictive-Forces Approach to the Computation of the Magnetostriction-Induced Vibration of Laminated Steel Structures", IEEE Transactions on Magnetics, vol.49, no.11, pp.5446-5453, 2013.
10.
Hassan Ebrahimi, Yanhui Gao, Akihisa Kameari, Hiroshi Dozono, Kazuhiro Muramatsu, "Coupled Magneto-Mechanical Analysis Considering Permeability Variation by Stress Due to Both Magnetostriction and Electromagnetism", IEEE Transactions on Magnetics, vol.49, no.5, pp.1621-1624, 2013.
11.
A. A. Journeaux, F. Bouillault, J.-Y. Roger, "Magneto-Mechanical Dynamic System Modeling Using Computer Code Chaining and Field Projections", IEEE Transactions on Magnetics, vol.49, no.5, pp.1757-1760, 2013.
12.
Huang Wenmei, Song Guiying, Sun Ying, Wang Bowen, Zhang Chuang, "Numerical Dynamic Strong Coupled Model of Linear Magnetostrictive Actuators", IEEE Transactions on Magnetics, vol.48, no.2, pp.391-394, 2012.
13.
Wenmei Huang, Zhida Li, Bowen Wang, Rongge Yan, Shuying Cao, Qingxin Yang, Weili Yan, "Dynamic magneto-mechanical coupling model based on FEM for giant magnetostrictive actuators", 2008 World Automation Congress, pp.1-4, 2008.
14.
Wieslaw Lyskawinski, Wojciech Szelag, Cezary Jedryczka, "Simulation and investigation of magnetorheological fluid brake", 2008 13th International Power Electronics and Motion Control Conference, pp.2406-2411, 2008.
15.
Wenmei Huang, B. Wang, R. Yan, Shuying Cao, Ling Weng, Weili Yan, "A numerical dynamic model of giant magnetostrictive actuator", 2005 International Conference on Electrical Machines and Systems, vol.1, pp.772-774 Vol. 1, 2005.
16.
R. Yan, B. Wang, Qingxin Yang, Fugui Liu, Shuying Cao, Wenmei Huang, "A numerical model of displacement for giant magnetostrictive actuator", IEEE Transactions on Applied Superconductivity, vol.14, no.2, pp.1914-1917, 2004.
17.
M. Besbes, Z. Ren, A. Razek, "A generalized finite element model of magnetostriction phenomena", IEEE Transactions on Magnetics, vol.37, no.5, pp.3324-3328, 2001.
Cites in Papers - Other Publishers (29)
1.
Wojciech Szelag, Cezary Jedryczka, Adam Myszkowski, Rafal M. Wojciechowski, "Coupled Field Analysis of Phenomena in Hybrid Excited Magnetorheological Fluid Brake", Sensors, vol.23, no.1, pp.358, 2022.
2.
Amritesh Kumar, A. Arockiarajan, "Evolution of nonlinear magneto-elastic constitutive laws in ferromagnetic materials: A comprehensive review", Journal of Magnetism and Magnetic Materials, vol.546, pp.168821, 2022.
3.
Danial Gandomzadeh, Mohammad Hossein Abbaspour‐Fard, Abbas Rohani, Mostafa Sharifi, "The influence of coil parameters and core lamination factor on the performance of an ultrasonic transducer with a tapered core", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2022.
4.
Lihua Zhu, Qianchao Wang, Rui Sha, Chang-seop Koh, "A New Structure of a Gap-Reactor to Reduce Electromagnetic Vibrations", Journal of Electrical Engineering & Technology, 2021.
5.
Yongfang Zhang, Chongyang Fang, Yanfei Huang, Weiling Guo, Zhiguo Xing, Haidou Wang, Zhinan Zhang, "Enhancement of fatigue performance of 20Cr2Ni4A gear steel treated by pulsed magnetic treatment: influence mechanism of residual stress", Journal of Magnetism and Magnetic Materials, pp.168327, 2021.
6.
Jianwei Shao, Cuidong Xu, Ka Wai Eric Cheng, "Core Stress Analysis of Amorphous Alloy Transformer for Rail Transit under Different Working Conditions", Energies, vol.14, no.1, pp.164, 2020.
7.
S. Sudersan, U. Saravanan, A. Arockiarajan, "Finite element formulation for implicit magnetostrictive constitutive relations", Computational Mechanics, vol.66, no.6, pp.1497, 2020.
8.
Danial Gandomzadeh, Mohammad Hossein Abbaspour-Fard, "Numerical study of the effect of core geometry on the performance of a magnetostrictive transducer", Journal of Magnetism and Magnetic Materials, vol.513, pp.166823, 2020.
9.
Justinas Račkauskas, Magnetomechanical study of open-bore two-rail electromagnetic launcher, 2018.
10.
M. Morrone, C. Garion, M. Aurisicchio, P. Chiggiato, "A coupled multiphysics FEM model to investigate electromagnetic, thermal and mechanical effects in complex assemblies: the design of the High Luminosity Large Hadron Collider beam screen", Applied Mathematical Modelling, 2017.
11.
Alejandro Francisco Queiruga, Tarek I. Zohdi, "Formulation and numerical analysis of a fully-coupled dynamically deforming electromagnetic wire", Computer Methods in Applied Mechanics and Engineering, vol.305, pp.292, 2016.
12.
José L. Pérez-Aparicio, Roberto Palma, Robert L. Taylor, "Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials", Archives of Computational Methods in Engineering, vol.23, no.3, pp.535, 2016.
13.
Pan Ting Dong, Li Zhang, Meng Qi Liu, Tong Zhao, Liang Zou, Qing Quan Li, "Silicon Steel Sheet Vibration Model Based on the Magnetostrictive Properties", Advanced Materials Research, vol.955-959, pp.882, 2014.
14.
Anouar Belahcen, Katarzyna Fonteyn, Reijo Kouhia, Paavo Rasilo, Antero Arkkio, "Magnetomechanical coupled FE simulations of rotating electrical machines", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.32, no.5, pp.1484, 2013.
15.
Antoine Alexandre Journeaux, Frédéric Bouillault, Jean-Yves Roger, "Multi-physics problems computation using numerically adapted meshes: application to magneto-thermo-mechanical systems", The European Physical Journal Applied Physics, vol.61, no.3, pp.30001, 2013.
16.
She Liang Wang, Xiao Yu Miao, Yu Jiang Fan, "The Theory and Application Research on the Magnetic Non-Destructive Testing of a Safe State for a Defect Sensitive Structure", Advanced Materials Research, vol.361-363, pp.1970, 2011.
17.
Yvan Lefevre, Gilbert Reyne, The Finite Element Method for Electromagnetic Modeling, pp.431, 2010.
18.
Jademond Kiang, Liyong Tong, "Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals", Smart Materials and Structures, vol.19, no.1, pp.015017, 2010.
19.
X. Mininger, N. Galopin, Y. Dennemont, F. Bouillault, "3D finite element model for magnetoelectric sensors", The European Physical Journal Applied Physics, vol.52, no.2, pp.23303, 2010.
20.
Hao-Miao Zhou, You-He Zhou, Xiao-Jing Zheng, Qiang Ye, Jing Wei, "A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials", Journal of Magnetism and Magnetic Materials, vol.321, no.4, pp.281, 2009.
21.
Cezary Jędryczka, Piotr Sujka, Wojciech Szeląg, "The influence of magnetic hysteresis on magnetorheological fluid clutch operation", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.28, no.3, pp.711, 2009.
22.
Hao-Miao Zhou, You-He Zhou, Xiao-Jing Zheng, "A general theoretical model of magnetostrictive constitutive relationships for soft ferromagnetic material rods", Journal of Applied Physics, vol.104, no.2, pp.023907, 2008.
23.
Romain Corcolle, Laurent Daniel, Frédéric Bouillault, "Generic formalism for homogenization of coupled behavior: Application to magnetoelectroelastic behavior", Physical Review B, vol.78, no.21, 2008.
24.
G.B. Kumbhar, S.V. Kulkarni, R. Escarela‐Perez, E. Campero‐Littlewood, "Applications of coupled field formulations to electrical machinery", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.26, no.2, pp.489, 2007.
25.
Wojciech Szeląg, "Finite element analysis of coupled phenomena in magnetorheological fluid devices", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.23, no.3, pp.813, 2004.
26.
Ho-Mun Si, Chongdu Cho, "Finite element modeling of magnetostriction for multilayered MEMS devices", Journal of Magnetism and Magnetic Materials, vol.270, no.1-2, pp.167, 2004.
27.
W. Szeląg, P. Sujka, R. Walendowski, "Field‐circuit transient analysis of a magnetorheological fluid brake", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.23, no.4, pp.986, 2004.
28.
Wojciech Szeląg, "Finite element analysis of the magnetorheological fluid brake transients", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.23, no.3, pp.758, 2004.
29.
Jaroslav Mackerle, "Smart materials and structures - a finite-element approach: a bibliography (1986-1997)", Modelling and Simulation in Materials Science and Engineering, vol.6, no.3, pp.293, 1998.