Loading [MathJax]/extensions/MathMenu.js
FPGA Design Methodology for Industrial Control Systems—A Review | IEEE Journals & Magazine | IEEE Xplore

FPGA Design Methodology for Industrial Control Systems—A Review


Abstract:

This paper reviews the state of the art of field- programmable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper s...Show More

Abstract:

This paper reviews the state of the art of field- programmable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic.
Published in: IEEE Transactions on Industrial Electronics ( Volume: 54, Issue: 4, August 2007)
Page(s): 1824 - 1842
Date of Publication: 09 July 2007

ISSN Information:

References is not available for this document.

I. Introduction

Fast progress of very large scale integration (VLSI) technology and electronic design automation (EDA) techniques in recent years has created an opportunity for the development of complex and compact high-performance controllers for industrial electronic systems [1]. Nowadays, the design engineer is using modern EDA tools to create, simulate, and verify a design and, without committing to hardware, can quickly evaluate complex systems and ideas with very high confidence in the “right first time” correct operation of the final product.

Select All
1.
M. N. Cirstea, A. Dinu, J. Khor and M. McCormick, Neural and Fuzzy Logic Control of Drives and Power Systems, U.K., Oxford:Elsevier, 2002.
2.
D. L. Perry, VHDL, New York:McGraw-Hill, 2004.
3.
C. Cecati, "Microprocessors for power electronics and electrical drives applications", IEEE Ind. Electron. Soc. Newsl., vol. 46, no. 3, pp. 5-9, Sep. 1999.
4.
S. Brown, "FPGA architectural research: A survey", IEEE Des. Test. Comput., vol. 13, no. 4, pp. 9-15, Winter 1996.
5.
Internet sites and on line journals dedicated to FPGAs such as: FPGA-FAQ.
6.
Altera data book, 2006.
7.
Xilinx data book, 2006.
8.
Actel data book, 2006.
9.
D. H. Lee, A. Choi, J. M. Koo, J. I. Lee and B. M. Kim, "A wideband DS-CDMA modem for a mobile station", IEEE Trans. Consum. Electron., vol. 45, no. 4, pp. 1259-1269, Nov. 1999.
10.
P. Pirsch, N. Demassieux and W. Gehrke, "VLSI architectures for video compressionA survey", Proc. IEEE, vol. 83, no. 2, pp. 220-246, Feb. 1995.
11.
S. J. Ovaska and O. Vainio, "Evolutionary-programming-based optimization of reduced-rank adaptive filters for reference generation in active power filters", IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 910-916, Aug. 2004.
12.
R. X. Chen, L. G. Chen and L. Chen, "System design consideration for digital wheelchair controller", IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 898-907, Aug. 2000.
13.
K. Sridharan and T. K. Priya, "The design of a hardware accelerator for real-time complete visibility graph construction and efficient FPGA implementation", IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1185-1187, Aug. 2005.
14.
T. N. Chang, B. Cheng and P. Sriwilaijaroen, "Motion control firmware for high-speed robotic systems", IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1713-1722, Oct. 2006.
15.
T. H. S. Li, C. Shih-Jie and C. Yi-Xiang, "Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot", IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 867-880, Oct. 2003.
16.
M. Gabrick, R. Nicholson, F. Winters, B. Young and J. Patton, "FPGA considerations for automotive applications", Proc. SAE Conf., 2006.
17.
J. J. Wang, R. B. Katz, J. S. Sun, B. E. Cronquist, J. L. McCollum, T. M. Speers, et al., "SRAM based reprogrammable FPGA for space applications", IEEE Trans. Nucl. Sci., vol. 46, no. 6, pp. 1728-1735, Dec. 1999.
18.
H. Y. Lui, C. H. Lee and R. H. Patel, "Power budget power estimation and thermal budgeting methodology for FPGAs", Proc. Custom Integr. Circuits Conf., pp. 711-714, 2004.
19.
S. Velusamy, W. Huang, J. Lach, M. Stan and K. Skadron, "Monitoring temperature in FPGA based SoCs", Proc. Comput. Des. Conf., pp. 634-637, 2005.
20.
N. P. Ligocki, A. Rettberg, M. Zanella, A. Hennig and A. L. de Freitas Francisco, "Towards a modular communication system for FPGAs", Proc. Electron. Des. Test and Appl. Workshop, pp. 71-76, 2004.
21.
D. E. Johnson, K. S. Morgan, M. J. Wirthlin, M. P. Carey and P. S. Graham, "Persistent errors in SRAM-based FPGAs", Proc. MAPL Conf., 2004.
22.
E. Kiel, "Control electronics in drive systems micro controller DSPs FPGAs ASICs from state-of-art to future trends", Proc. PCIM Conf., 2002.
23.
Y. Y. Tzou and H. J. Hsu, "FPGA realization of space-vector PWM control IC for three-phase PWM inverters", IEEE Trans. Power Electron., vol. 12, no. 6, pp. 953-963, Nov. 1997.
24.
H. Abu-Rub, J. Guzinski, Z. Krzeminski and H. A. Toliyat, "Predictive current control of voltage-source inverters", IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 585-593, Jun. 2004.
25.
A. de Castro, P. Zumel, O. Garcia, T. Riesgo and J. Uceda, "Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA", IEEE Trans. Power Electron., vol. 18, no. 1, pp. 334-343, Jan. 2003.
26.
M. Aime, G. Gateau and T. Meynard, "Implementation of a peak current control algorithm within a field programmable gate array", IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 406-418, Feb. 2007.
27.
G. Gateau, A. M. Lienhardt and T. Meynard, "Digital sliding mode observer implementation using FPGA", IEEE Trans. Ind. Electron., vol. 54, no. 4, Aug. 2007.
28.
J. Mahlein, J. Igney, J. Weigold, M. Braun and O. Simon, "Matrix converter commutation strategies with and without explicit input voltage sign measurement", IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 407-414, Apr. 2002.
29.
P. W. Wheeler, J. Clare and L. Empringham, "Enhancement of matrix converter output waveform quality using minimized commutation times", IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 240-244, Feb. 2004.
30.
R. Garcia-Gil, J. M. Espi, E. J. Dede and E. Sanchis-Kilders, "A bidirectional and isolated three-phase rectifier with soft-switching operation", IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 765-773, Jun. 2005.
Contact IEEE to Subscribe

References

References is not available for this document.