Abstract:
A simulation program that models the gas immersion laser doping (GILD) process is described. This program, which is called LASERMELT, first solves for the silicon melt de...Show MoreMetadata
Abstract:
A simulation program that models the gas immersion laser doping (GILD) process is described. This program, which is called LASERMELT, first solves for the silicon melt depth and melt time versus laser energy fluence, and then the impurity dopant profiles using a dopant incorporation and impurity diffusion model. Experimental and simulated dopant profiles and sheet resistance values are given as functions of the laser energy fluence and number of pulses. The determination of liquid phase impurity diffusion coefficients in molten silicon is also described.<>
Published in: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ( Volume: 7, Issue: 2, February 1988)
DOI: 10.1109/43.3150
References is not available for this document.
Select All
1.
P. G. Carey, T. W. Sigmon, R. L. Press and T. S. Fahlen, "Ultra-shallow high-concentration boron profiles for CMOS processing", IEEE Electron Device Lett., vol. EDL-6, pp. 241-243, 1985.
2.
P. G. Carey, K. Bezjian, T. W. Sigmon, P. Gildea and T. J. Magee, "Fabrication of submicrometer MOSFET's using gas immersion laser doping", IEEE Electron Device Lett., vol. EDL-7, pp. 440-442, 1986.
3.
T. M. Liu and W. G. Oldham, "Channeling effect of low energy boron implant in (100)silicon", IEEE Electron Device Lett., vol. EDL-4, pp. 59-62, 1983.
4.
H. Ishiwara and S. Horita, "Formation of shallow p+n junctions by B-ion implantation in Si substrates with amorphous layers", Jap. J. Appl. Phys., vol. 24, no. 5, pp. 568-573, 1985.
5.
A. C. Ajmera and G. A. Rozgonyi, "Elimination of end-of-range and mask-edge lateral damage in Ge+ prearmophized B+ implanted Si", Appl. Phys. Lett., vol. 49, no. 10, pp. 1269-1271, 1986.
6.
M. Delfino, D. K. Sadana and A. E. Morgan, "Shallow junction formation by preamorphization with tin implantation", Appl. Phys. Lett., vol. 49, no. 10, pp. 575-577, 1986.
7.
S. D. Brotherton, J. P. Gowers, N. D. Young, J. B. Clegg and J. R. Ayres, "Defects and leakage currents in BF2 implanted preamorphized silicon", J. Appl. Phys., vol. 60, no. 10, pp. 3567-3575, 1986.
8.
S. Guimaraes, E. Landi and S. Solmi, "Enhanced diffusion phenomena during RTA of preamorphized boron-implanted silicon", Phys. Status Solidi, vol. 95, pp. 589-598, 1986.
9.
K. G. Ibbs and M. L. Lloyd, "Ultra-violet laser doping of silicon", Optics and Laser Technology, pp. 35-39, Feb. 1983.
10.
K. G. Ibbs and M. L. Lloyd, "Laser Doping: Bipolar Structures in Silicon", Optics and Laser Technol., vol. 37, Feb. 1984.
11.
T. F. Deutsch, J. C. C. Fan, G. W. Turner, R. L. Chapman, D. J. Ehrlich and R. M. Osgood, "Efficient Si solar cells by laser photochemical doping", Appl. Phys. Lett., vol. 38, no. 3, pp. 144-146, 1981.
12.
G. B. Turner, D. Tarrant, G. Pollock, R. Pressley and R. Press, "Solar cells made by laser-induced diffusion directly from phosphine gas", Appl. Phys. Lett., vol. 39, no. 12, pp. 967-969, 1981.
13.
T. F. Deutsch, D. J. Ehrlich, D. D. Rathman, D. J. Silversmith and R. M. Osgood, "Electrical properties of laser chemically doped silicon", Appl. Phys. Lett., vol. 39, no. 10, pp. 825-827, 1981.
14.
C. W. White, S. R. Wilson, B. R. Appleton and F. W. Young, "Supersaturated substitutional alloys formed by ion implantation and pulsed laser annealing of group III and group V dopants in silicon", J. App. Phys., vol. 51, no. 1, pp. 738-749, 1980.
15.
R. F. Wood and G. E. Giles, "Macroscopic theory of pulsed-laser annealing. 1. Thermal transport and melting", Phys. Rev. B, vol. 23, no. 6, pp. 2923-2942, 1981.
16.
A. E. Adams and S. L. Morgan, "The application of laser annealing to dopant profiling for semiconductor devices", J. Phys. (Paris), vol. 44, no. 10, pp. (C5) 433-437, 1983.
17.
D. Barbier, G. Chemisky, J. J. Grob, A. Laugier, P. Siffert and R. Stuck, "Pulsed electron beam annealing of As and B implanted silicon", J. Phys. (Paris), vol. 44, no. 10, pp. (C5) 209-214, 1983.
18.
P. G. Carey, K. H. Weiner, and T. W. Sigmon, to be published.
19.
M. O. Thompson, 1984.
20.
C. K. Ong, E. H. Sin and H. S. Tan, "Heat-flow calculation of pulsed excimer ultraviolet laser's melting of amorphous and crystalline silicon surfaces", J. Opt. Soc. Amer., vol. 3, no. 5, pp. 812-814, 1986.
21.
CRC Handbook of Chemistry and Physics, Boca Raton:Chemical Rubber Company, pp. D-45, 1986.
22.
C. Y. Ho, R. W. Powell and P. E. Liley, "Thermal conductivity of the elements", J. Phys. Chem. Ref. Data, vol. 1, pp. 394, 1972.
23.
M. O. Thompson, J. W. Mayer, A. G. Cullis, H. C. Webber, N. G. Chew, J. M. Poate, et al., "Silicon melt regrowth and amorphization velocities during pulsed laser irradiation", Phys. Rev. Lett., vol. 50, no. 12, pp. 896-899, 1983.
24.
G. E. Jellison and F. A. Modine, "Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures", Appl. Phys. Lett., vol. 41, no. 2, pp. 180-182, 1982.
25.
S. Unamuno, M. Toulemonde and P. Siffert, "Melting model for UV lasers" in Laser Processings and Diagnostics, New York:Springer-Verlag, pp. 35-39, 1984.
26.
R. F. Wood and F. W. Young, "Non-equilibrium solidification following pulsed laser melting" in Pulsed Laser Processing of Semiconductors, New York:Academic Press, vol. 23, pp. 251-312, 1984.
27.
R. F. Wood, J. R. Kirkpatrick and G. E. Giles, "Macroscopic theory of pulsed-laser annealing. II. Dopant diffusion and segregation", Phys. Rev. 8, vol. 23, no. 10, pp. 5555-5569, 1981.
28.
G. J. van Gurp, G. E. J. Eggermont, Y. Tamminga, W. T. Stacy and J. R. M. Gijsbers, "Cellular structure and silicide formation in laser-irradiated metal-silicon systems", Appl. Phys. Lett., vol. 35, no. 3, pp. 273-275, 1979.
29.
C. W. White, "Dopant incorporation during nonequilibrium solidification", J. Phys. (Paris), vol. 44, no. 10, pp. (C5) 145-155, 1983.
30.
H. Kodera, "Diffusion coefficients of impurities in silicon melt", Jap. J. Appl. Phys., vol. 2, no. 4, pp. 212-219, 1963.