Abstract:
The authors propose a design method for a robust controller including a new type of observer called the proportional integral (PI) observer. The new observer differs from...Show MoreMetadata
Abstract:
The authors propose a design method for a robust controller including a new type of observer called the proportional integral (PI) observer. The new observer differs from the conventional one by an integration path which provides additional degrees of freedom. This freedom can be used to make the observer-based controller design less sensitive to parameter variation of the system. It is shown that some of the difficulties that can arise in the exclusive pursuit of a design for the conventional observer-based controller from the point of view of system robustness are resolved in a straightforward manner using the PI observer. A systematic robustness recovery procedure is described for the PI observer-based controller design which asymptotically achieves the same loop transfer functions as the fullstate feedback controller implementation. A design example is included and the effectiveness of the method is illustrated by simulation results.<>
Date of Conference: 07-09 December 1988
Date Added to IEEE Xplore: 06 August 2002
References is not available for this document.
Select All
1.
H. Kwakernaak and R. Sivan, "The maximally achievable accuracy of linear optimal regulators and linear optimal filters", IEEE Trans. Automat. Contr., vol. AC-17, pp. 79-86, Jan. 1972.
2.
S. P. Bhattacharyya, "The structure of robust observers", IEEE Trans. Automat. Contr., vol. AC-20, pp. 581-588, 1976.
3.
M. M. Missaghie and F. W. Fairman, "Desensitivity reducing observers for optimal feedback control", IEEE Trans. Automat. Contr., vol. AC-22, pp. 952-957.
4.
M. G. Safonov and M. Athans, "Gain and phase margin for multiloop LQG regulators", IEEE Trans. Automat. Contr., vol. AC-22, pp. 173-179, 1977.
5.
J. C. Doyle, "Guaranteed margins for LQG regulators", IEEE Trans. Automat. Contr., vol. AC-23, pp. 756-767, 1978.
6.
J. C. Doyle and G. Stein, "Robustness with observers", IEEE Trans. Automat. Contr., vol. AC-24, pp. 607-611, 1979.
7.
E. G. Rynaski, "Flight control synthesis using robust output observers", Proc. AIAA Guidance and Contr. Conf., 1982-Aug.
8.
J. C. Doyle and G. Stein, "Multivariable feedback design: concepts for a classical/modern synthesis", IEEE Trans. Automat. Contr., vol. AC-26, pp. 4-17, 1981.
9.
M. Sain, "Special issue on linear multivariable control systems", IEEE Trans. Automt. Contr., vol. AC-23, Feb. 1981.
10.
R. T. Stefani, "Reducing the sensitivity of parameter variations of minimal-order reduced-order observers", Int. J. Contr., vol. 35, Jun. 1982.
11.
J. O'Reilly, Observers for Linear Systems, London:Academic Press, 1983.
12.
T. E. Djaferis, "Robust observers and regulation for systems with parameters", Proc. 23rd CDC, pp. 1234-1239, 1984.
13.
A. N. Madiwale and D. E. Williams, "Some extensions of loop transfer recovery", Proc. Amer. Contr. Conf., pp. 790-795, 1985.
14.
T. Okada, M. Kihara and H. Fuihata, "Robust control system with observer", Int. J. Contr., vol. 41, pp. 1207-1219, May 1985.
15.
C. V. Hollot and A. R. Galimidi, "Stabilizing uncertain systems; recovering full state feedback performance via an observer", IEEE Trans. Automat. Contr., vol. AG-31, pp. 1050-1053, Nov. 1986.
16.
T. T. Lee and M. S. Chen, "Robustness recovery of LQG-based multivariable control designs", Int. J. Contr., vol. 45, pp. 1131-1136, Apr. 1987.
17.
S. P. Bhattacharyya, Robust stabilization against structured perturbations, New York:Springer Verlag, vol. 99, 1987.
18.
P. Dorato, Robust Control, IEEE Publication, 1987.
19.
B. Wojciechowski, Analysis and synthesis of proportional-integral observers for single-input single-output time invariant continuous systems, 1978.
20.
T. Kaczorek, "Proportional-integral observers for linear multivariable time-varying systems", Rerelungstechnik, 1979.
21.
B. Shafai, "Design of proportional-intregral observers for linear time-varying multivariable systems", Proc. 24th CDC, pp. 597-599, 1985.
22.
T. Kailath, Linear Systems, NJ, Englewood Cliffs, 1980.
23.
R. V. Patel, M. Toda and B. Sridhar, "Robustness of linear quadratic state feedback designs in the presence of system uncertainty", IEEE Trans. Automat. Contr., vol. AC-20, pp. 945-949, 1977.
24.
R. K. Yedavalli, "Improved measures of stability robustness for linear state space models", IEEE Trans. Automat. Contr., pp. 577, 1985.
25.
E. Y. Shapiro and J. C. Chung, "Applications of eigenvalue/eigenvector assignment by constant output feedback to flight control system design", Proc. Conf. Inform. Sci. Syst., pp. 164-168, 1981-Mar.
26.
A. N. Andry, J. C. Chung and E. Y. Shapiro, "Modalized observers", IEEE Trans. Automat. Contr., vol. AC-29, pp. 669-672, 1984.
27.
E. Y. SHipiro, F. L. Shenk and H. E. Decarli, "Reconstructed flight control sensor signals via Luenberger observers", IEEE Trans. Aero. and Elec. Syst., vol. AES-15, pp. 245-252, 1979.