Abstract:
A high-speed InGaAs/InAlAs multiple-quantum-well (MQW) intensity modulator and an InGaAsP/InGaAs MQW distributed feedback laser were monolithically integrated by using a ...Show MoreMetadata
Abstract:
A high-speed InGaAs/InAlAs multiple-quantum-well (MQW) intensity modulator and an InGaAsP/InGaAs MQW distributed feedback laser were monolithically integrated by using a hybrid growth technique combining molecular beam epitaxy and metalorganic vapor phase epitaxy. An operating drive voltage of only 2.0 V, a 20-dB on/off ratio, and a 3-dB bandwidth greater than 15 GHz were obtained. This device operated stably in a single mode and with a side-mode suppression ratio of more than 50 dB.<>
Published in: IEEE Photonics Technology Letters ( Volume: 5, Issue: 1, January 1993)
DOI: 10.1109/68.185061
Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (11)
Select All
1.
Cheng Guan Lim, "A Passive Broadband Impedance Equalizer for Improving the Input Return Loss of Electro-Absorption Modulators", Journal of Lightwave Technology, vol.27, no.8, pp.1051-1058, 2009.
2.
Y. Yuan, R. Jambunathan, J. Singh, P. Bhattacharya, "Finite-difference time-domain analysis and experimental examination of the performance of a coupled-cavity MQW laser/active waveguide at 1.54 /spl mu/m", IEEE Journal of Quantum Electronics, vol.33, no.3, pp.408-415, 1997.
3.
Jianyao Chen, R. Maciejko, T. Makino, "Dynamic properties of push-pull DFB semiconductor lasers", IEEE Journal of Quantum Electronics, vol.32, no.12, pp.2156-2165, 1996.
4.
D. Marcuse, T.H. Wood, "Simulation of a laser modulator driven by NRZ pulses", Journal of Lightwave Technology, vol.14, no.5, pp.860-866, 1996.
5.
P.A. Evaldsson, G.W. Taylor, M. Micovic, R. Malik, Shijun Jiang, "Integrated HFETs and HFET lasers utilizing carbon doping", IEEE Photonics Technology Letters, vol.8, no.3, pp.370-372, 1996.
6.
M. Allovon, S. Fouchet, J.-C. Harmand, A. Ougazzaden, B. Rose, A. Gloukhian, F. Devaux, "Monolithic integration on InP of a Wannier Stark modulator with a strained MQW DFB 1.55-μm laser", IEEE Photonics Technology Letters, vol.7, no.2, pp.185-187, 1995.
7.
D. Marcuse, T.H. Wood, "Time-dependent simulation of a laser-modulator combination", IEEE Journal of Quantum Electronics, vol.30, no.12, pp.2743-2755, 1994.
8.
F. Dorgeuille, F. Devaux, "On the transmission performances and the chirp parameter of a multiple-quantum-well electroabsorption modulator", IEEE Journal of Quantum Electronics, vol.30, no.11, pp.2565-2572, 1994.
9.
E. Zielinski, D. Baums, H. Haisch, M. Klenk, E. Kuhn, K. Satzke, M. Schilling, "Integrated quantum well modulators for very high speed transmission systems", Proceedings of 1994 IEEE 6th International Conference on Indium Phosphide and Related Materials (IPRM), pp.68-71, 1994.
10.
O. Mitomi, K. Wakita, I. Kotaka, "Chirping characteristic of electroabsorption-type optical-intensity modulator", IEEE Photonics Technology Letters, vol.6, no.2, pp.205-207, 1994.
11.
K. Wakita, K. Sato, I. Kotaka, M. Yamamoto, M. Asobe, "Transform-limited 7-ps optical pulse generation using a sinusoidally driven InGaAsP/InGaAsP strained multiple-quantum-well DFB laser/modulator monolithically integrated light source", IEEE Photonics Technology Letters, vol.5, no.8, pp.899-901, 1993.
Cites in Papers - Other Publishers (13)
1.
Dai-Bing Zhou, Hui-Tao Wang, Rui-Kang Zhang, Bao-Jun Wang, Jing Bian, Xin An, Dan Lu, Ling-Juan Zhao, Hong-Liang Zhu, Chen Ji, Wei Wang, "Fabrication of 32Gb/s Electroabsorption Modulated Distributed Feedback Lasers by Selective Area Growth Technology", Chinese Physics Letters, vol.32, no.5, pp.054205, 2015.
2.
"10.3807/KJOP.2005.16.6.542", CrossRef Listing of Deleted DOIs, vol.1, 2015.
3.
Jongbum Nah, Patrick Likamwa, "Monolithically Integrated All-optical Switch using Quantum Well Intermixing", Optical and Quantum Electronics, vol.38, no.7, pp.567, 2006.
4.
J. H. Teng, J. R. Dong, S. J. Chua, M. Y. Lai, B. C. Foo, D. A. Thompson, B. J. Robinson, A. S. W. Lee, John Hazell, Irwin Sproule, "Controlled group V intermixing in InGaAsP quantum well structures and its application to the fabrication of two section tunable lasers", Journal of Applied Physics, vol.92, no.8, pp.4330, 2002.
5.
J.H. Teng, J.R. Dong, S.J. Chua, D.A. Thompson, B.J. Robinson, A.S.W. Lee, John Hazell, Irwin Sproule, "Impurity-free intermixing in compressively strained InGaAsP multiple quantum well structures", Materials Science in Semiconductor Processing, vol.4, no.6, pp.621, 2001.
6.
J. H. Teng, S. J. Chua, Y. H. Huang, G. Li, Z. H. Zhang, A. Saher Helmy, J. H. Marsh, "Multi-wavelength lasers fabricated by an Al layer controlled quantum well intermixing technology", Journal of Applied Physics, vol.88, no.6, pp.3458, 2000.
7.
A. Saher Helmy, S. K. Murad, A. C. Bryce, J. S. Aitchison, J. H. Marsh, S. E. Hicks, C. D. W. Wilkinson, "Control of silica cap properties by oxygen plasma treatment for single-cap selective impurity free vacancy disordering", Applied Physics Letters, vol.74, no.5, pp.732, 1999.
8.
Koichi Wakita, "Monolithic Integration of Intensity Modulators and Laser Diodes", Semiconductor Optical Modulators, pp.193, 1998.
9.
Jianyao Chen, Roman Maciejko, Toshihiko Makino, "High resonance frequency of push-pull distributed feedback lasers", Journal of Applied Physics, vol.79, no.12, pp.8914, 1996.
10.
Isamu Kotaka, Kenji Sato, Koichi Wakita, Mitsuo Yamamoto, Tomoyoshi Kataoka, "High-speed (20 Gb/s), low-drive voltage (2 Vp-p) strained InGaAsP mqw modulator/DFB laser light source", Electronics and Communications in Japan (Part II: Electronics), vol.78, no.1, pp.1, 1995.
11.
Koichi Wakita, Isamu Kotaka, "Multiple‐quantum‐well optical modulators and their monolithic integration with DFB lasers for optical‐fiber communications (invited paper)", Microwave and Optical Technology Letters, vol.7, no.3, pp.120, 1994.
12.
S. A. Pappert, W. Xia, X. S. Jiang, Z. F. Guan, B. Zhu, Q. Z. Liu, L. S. Yu, A. R. Clawson, P. K. L. Yu, S. S. Lau, "Planar 1.3 and 1.55 μm InGaAs(P)/InP electroabsorption waveguide modulators using oxygen ion mixing and the photoelastic effect", Journal of Applied Physics, vol.75, no.9, pp.4352, 1994.
13.
D.T. Nichols, J. Lopata, W.S. Hobson, N.K. Dutta, P.R. Berger, D.L. Sivco, A.Y. Cho, "Monolithic GaAs/AlGaAs optical transmitter circuit using a single growth step", Electronics Letters, vol.30, no.6, pp.490-491, 1994.