Loading [MathJax]/extensions/MathMenu.js
Learning for Hierarchical Fuzzy Systems Based on the Gradient-Descent Method | IEEE Conference Publication | IEEE Xplore

Learning for Hierarchical Fuzzy Systems Based on the Gradient-Descent Method


Abstract:

Standard fuzzy systems suffer the "curse of dimensionality" which has become the bottleneck when applying fuzzy systems to solve complex and high dimensional application ...Show More

Abstract:

Standard fuzzy systems suffer the "curse of dimensionality" which has become the bottleneck when applying fuzzy systems to solve complex and high dimensional application problems. This curse of dimensionality results in a larger number of fuzzy rules which reduces the transparency of fuzzy systems. Furthermore too many rules also reduce the generalization capability of fuzzy systems. Hierarchical fuzzy systems have emerged as an effective alternative to overcome this curse of dimensionality and have attracted much attention. However, research on learning methods for hierarchical fuzzy systems and applications is rare. In this paper, we propose a scheme to construct general hierarchical fuzzy systems based on the gradient-descent method. To show the advantages of the proposed method (in terms of accuracy, transparency, generalization capability and fewer rules), this method is applied to a function approximation problem and the result is compared with those obtained by standard (flat) fuzzy systems.
Date of Conference: 16-21 July 2006
Date Added to IEEE Xplore: 11 September 2006
Print ISBN:0-7803-9488-7
Print ISSN: 1098-7584
Conference Location: Vancouver, BC, Canada
No metrics found for this document.

No metrics found for this document.
Contact IEEE to Subscribe

References

References is not available for this document.