Loading [MathJax]/extensions/MathMenu.js
Dynamic gain equalizer using hybrid integrated silica-based planar lightwave circuits with LiNbO/sub 3/ phase shifter array | IEEE Journals & Magazine | IEEE Xplore

Dynamic gain equalizer using hybrid integrated silica-based planar lightwave circuits with LiNbO/sub 3/ phase shifter array


Abstract:

This paper proposes a dynamic gain equalizer (DGE) using hybrid integrated silica-based planar lightwave circuits (PLCs) with a LiNbO/sub 3/ (LN) phase shifter array to a...Show More

Abstract:

This paper proposes a dynamic gain equalizer (DGE) using hybrid integrated silica-based planar lightwave circuits (PLCs) with a LiNbO/sub 3/ (LN) phase shifter array to achieve a DGE that offers both excellent optical performance and control of the phase shifters. The structure consists of two PLCs having arrayed-waveguide gratings (AWGs) and couplers directly attached to the LN phase shifter array at its end faces. To reduce polarization-dependent characteristics, a polarization diversity technique using a polarization beam splitter (PBS) and a circulator was employed. To reduce polarization-dependent loss (PDL) due to the reflected light at the PLC-LN interfaces, tilted waveguides from the normal direction to the interfaces were introduced, and the relation between PDL and power reflectivity was theoretically investigated. A hybrid integrated DGE using super-high-/spl Delta/ PLCs and a 25-channel electrooptic (EO) phase shifter array was demonstrated. The PDL was effectively suppressed with the introduced polarization diversity technique, and the measured spectra were in good agreement with designed profiles. These results indicate that the proposed hybrid integrated DGE offers good performance and controllability for practical applications.
Published in: Journal of Lightwave Technology ( Volume: 24, Issue: 1, January 2006)
Page(s): 495 - 503
Date of Publication: 06 February 2006

ISSN Information:

References is not available for this document.

I. Introduction

The exploding demand for Internet access and broadband services has led to the push for greater lightwave transmission capacity. Wavelength-division-multiplexing (WDM) systems can accommodate the increase in this demand by increasing the number of signal wavelengths propagating on a single fiber. These systems will evolve from point-to-point transmissions to next-generation WDM systems that are incorporated with reconfigurable add/drop nodes. Optical signal power levels in such systems are generally different for every wavelength because of the intrinsically nonflat gain profiles of erbium-doped fiber amplifiers (EDFAs) and the dependence of optical signal levels on network configuration. Since this difference in power levels degrades the signal-to-noise ratio, it is important to keep the levels constant over all channels. Consequently, a dynamic gain equalizer (DGE) is required to automatically compensate for variations in optical signal power levels.

Select All
1.
H. S. Kim, S. H. Yun, H. K. Kim, N. Park and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters", IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 790-792, Jun. 1998.
2.
T. Huang, M. Xu, C. Mao and J. C. Chiao, "Liquid crystal optical harmonic gain equalizer", Nat. Fiber Optic Engineers Conf. (NFOEC) Tech. Proc., pp. 443-450, 2001.
3.
B. J. Offrein, F. Horst, G. L. Bona, R. Germann, H. W. M. Salemink and R. Beyeler, "Adaptive gain equalizer in high-index-contrast SiON technology", IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 504-506, May 2000.
4.
S. Vallon, I. Cayrefourcq, P. Chevallier, N. Landru, G. Alibert, P. Laborde, et al., "Tapped delay line dynamic gain flattening filter", IEEE/LEOS Summer Topical Meetings, pp. 37-38, 2001.
5.
C. R. Doerr, C. H. Joyner and L. W. Stulz, "Integrated WDM dynamic power equalizer with potentially low insertion loss", IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1443-1445, Oct. 1998.
6.
C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, et al., "Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer", IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 581-583, May 1999.
7.
P. M. J. Schiffer, C. R. Doerr, L. W. Stulz, M. A. Cappuzzo, E. J. Laskowski, A. Paunescu, et al., "Smart dynamic wavelength equalizer based on an integrated planar optical circuit for use in the 1550-nm region", IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1150-1152, Sep. 1999.
8.
C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, et al., "An automatic 40-wavelength channelized equalizer", IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1195-1197, Sep. 2000.
9.
C. R. Doerr, R. Pafchek and L. W. Stulz, "16-band integrated dynamic gain equalization filter with less than 2.8-dB insertion loss", IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 334-336, Mar. 2002.
10.
T. Saida, K. Okamoto, K. Takiguchi and T. Shibata, "Dynamic gain equalisation filter based on integrated optical transversal filter with asymmetric combiner", Electron. Lett., vol. 38, no. 12, pp. 560-561, Jun. 2002.
11.
K. Maru, T. Chiba, T. Hasegawa, K. Tanaka, H. Nonen and H. Uetsuka, " High resolution dynamic gain equalizer using super-high- \$Delta\$ planar lightwave circuit technology ", Optical Fiber Communication (OFC) Tech. Dig., vol. 1, pp. 172-173, 2003.
12.
K. Maru, K. Tanaka, T. Chiba, H. Nonen and H. Uetsuka, "Dynamic gain equalizer using proposed adjustment procedure for thermooptic phase shifters under the influence of thermal crosstalk", J. Lightw. Technol., vol. 22, no. 6, pp. 1523-1532, Jun. 2004.
13.
J. E. Ford and J. A. Walker, "Dynamic spectral power equalization using micro-opto-mechanics", IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1440-1442, Oct. 1998.
14.
A. Sugita, K. Jinguji, N. Takato, K. Katoh and M. Kawachi, "Bride-suspended silica-waveguide thermo-optic phase shifter and its application to Mach̵Zehnder type optical switch", Trans. IEICE, vol. E73, no. 1, pp. 105-109, 1990.
15.
R. Kasahara, M. Yanagisawa, A. Sugita, T. Goh, M. Yasu, A. Himeno, et al., " Low-power consumption silica-based 2 \$times\$ 2 thermooptic switch using trenched silicon substrate ", IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1132-1134, Sep. 1999.
16.
Y. Yamada, A. Sugita, K. Moriwaki, I. Ogawa and T. Hashimoto, " An application of a silica-on-terraced-silicon platform to hybrid Mach̵Zehnder interferometric circuits consisting of silica-waveguides and \$hbox{LiNbO}_{3}\$ phase-shifters ", IEEE Photon. Technol. Lett., vol. 6, no. 7, pp. 822-824, Jul. 1994.
17.
T. Ohara, H. Takara, I. Shake, K. Mori, S. Kawanishi, S. Mino, et al., "160-Gb/s optical-time-division multiplexing with PPLN hybrid integrated planar lightwave circuit", IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 302-304, Feb. 2003.
18.
S. Kashimura, M. Takeuchi, K. Maru and H. Okano, " Loss reduction of \$hbox{GeO}_{2}\$ -doped silica waveguide with high refractive index difference by high-temperature annealing ", Jpn. J. Appl. Phys., vol. 39, no. 6A, pp. L521-L523, 2000.
19.
G. L. Matthaei, L. Young and E. M. T. Jones, Microwave Filters Impedance-Matching Networks and Coupling Structures, New York:McGraw-Hill, 1964.
20.
A. Yariv and P. Yeh, Optical Waves in Crystals, New York:Wiley, 1984.
21.
B. L. Heffner, "Deterministic analytically complete measurement of polarization-dependent transmission through optical devices", IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 451-454, May 1992.
22.
L. A. Coldren, K. Furuya, B. I. Miller and J. A. Rentschler, "Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics", IEEE J. Quantum Electron., vol. QE-18, no. 10, pp. 1679-1688, Oct. 1982.
23.
K. Iga, K. Wakao and T. Kunikane, "Mode reflectivity of tilted mirrors in semiconductor lasers with etched facets", Appl. Opt., vol. 20, no. 14, pp. 2367-2371, Jul. 1981.
24.
M. R. Aaron, "The use of least squares in system design", IRE Trans. Circuit Theory, vol. CT-3, no. 4, pp. 224-231, Dec. 1956.
25.
E. Voges and A. Neyer, " Integrated-optic devices on \$hbox{LiNbO}_{3}\$ for optical communication ", J. Lightw. Technol., vol. LT-5, no. 9, pp. 1229-1238, Sep. 1987.
26.
I. Kaminow and T. Li, "6" in Optical Fiber Telecommunications IVA Components, CA, San Diego:Academic, pp. 277-278, 2002.
27.
K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii and K. Okamoto, "Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask", Electron. Lett., vol. 36, no. 1, pp. 60-61, Jan. 2000.

References

References is not available for this document.