Loading [MathJax]/jax/output/HTML-CSS/autoload/mtable.js
Complex permittivity of composite systems: a comprehensive interphase approach | IEEE Journals & Magazine | IEEE Xplore

Complex permittivity of composite systems: a comprehensive interphase approach


Abstract:

The present paper reports the development of a unique model to provide physical insights to the complex permittivity of composite systems. The model takes into account in...Show More

Abstract:

The present paper reports the development of a unique model to provide physical insights to the complex permittivity of composite systems. The model takes into account interactions between the components of the composite system in the form of interphase regions. The resultant model, termed the interphase power-law (IPL) model, relies on the permittivities of the filler component, the matrix component and the interphase region as well as the volume fractions of each. The model is applicable to any uniform composite system of discrete particles dispersed within a matrix. Trends in the composite material's effective permittivity as a function of filler volume fraction, interphase permittivity, filler surface area and filler particle shapes are explored.
Page(s): 601 - 611
Date of Publication: 30 June 2005

ISSN Information:

References is not available for this document.

I. Introduction

Power-Law relationships are quite often used in dielectric modeling of composite systems [1]–[9]. These relationships model the effective permittivity of two-component systems using the volume fraction of each component according to equation (1). \epsilon _c^\beta = {\phi _1} \epsilon _1^\beta + \left( {1 - {\phi _1}} \right) \epsilon _3^\beta \eqno{\hbox{(1)}}

where and are the complex dielectric permittivity of the composite system, the filler and the matrix respectively, is the volume fraction of filler component of the composite system, and is a dimensionless parameter representing the shape and orientation of the filler particles within the bulk composite [1]. Common examples of this model are the linear mixtures model , the Birchak formula [2] and the Landau, Lifshitz, Looyenga formula [3]. The general two-component power-law model for complex permittivity has been used extensively for a wide range of material systems with varied success, including air-particulate composites [4]–[7], ceramic-ceramic composites [8] and polymer-ceramic composites [9]. More generally, for a composite comprised of n number of components, the power law mixtures model may be written as equation (2). \epsilon _c^\beta = \sum\limits_{i = 1}^n {{\phi _i}} \epsilon _i^\beta \eqno{\hbox{(2)}}
where and are the complex dielectric permittivity of the composite system and any constituent component of the composite respectively, is the volume fraction of the constituent component, and is a dimensionless parameter representing the shape and orientation of the filler particles within the bulk composite. Although quite successfully used to model a wide range of composite systems, the power law mixtures model does not account for interactions between the components of the composite, which is a serious limitation.

Select All
1.
K. K. Karkkainen, A. H. Sihvola and K. I. Nikoskinen, "Effective Permittivity of Mixtures: Numerical Validation by the FDTD Method", ” IEEE Trans. Geoscience Remote Sensing, vol. 38, pp. 1303-1308, 2000.
2.
J. R. Birchak, L. G. Gardner, J. W. Hipp and J. Victor, vol. 62, pp. 93-98, 1974.
3.
S. O. Nelson and P. G. Bartley, "Open-Ended Coaxial-Line Permittivity Measurements on Pulverized Materials", ” IEEE Trans. Inst. Measurement, vol. 47, pp. 133-137, 1998.
4.
S. O. Nelson, "Observations on the Density Dependence of Dielectric Properties of Particulate Materials", ” J Microw. Power, vol. 18, pp. 143-152, 1983.
5.
A. Priou, Dielectric Properties of Heterogeneous Materials, vol. 6, 1992.
6.
S. O. Nelson and T. S. You, "Relationships Between Microwave Permittivities of Solid and Pulverized Plastics", J. Phys. D: Appl. Phys., vol. 23, pp. 346-353, 1990.
7.
S. O. Nelson, "Measurement and Calculation of Powdered Mixture Permittivities", ” IEEE Trans. Inst. Meas., vol. 50, pp. 1066-1070, 2001.
8.
D. Gershon, J. P. Calame and A. Birnboim, "Complex Permittivity Measurements and Mixing Laws of Alumina Composites", ” J. Appl. Phys., vol. 89, pp. 8110-8116, 2001.
9.
C. Brosseau, P. Queffelec and P. Talbot, "Microwave Characterization of Filled Polymers", ” J. Appl. Phys., vol. 89, pp. 4532-4540, 2001.
10.
M. S. Ozmusul and R. C. Picu, "Elastic Moduli of Particulate Composites With Graded Filler-Matrix Interfaces", ” Polymer Composites, vol. 23, no. 1, pp. 110-119, 2002.
11.
J. Qu and C. P. Wong, "Effective Elastic Modulus of Underfill Material for Flip-Chip Applications", ” IEEE Trans. Components and Packaging Techn., vol. 25, pp. 53-55, 2002.
12.
H. Vo and F. G. Shi, "Towards Model-Based Engineering of Optoelectronic Packaging Materials: Dielectric Constant Modeling", ” Microelectronics J., vol. 33, pp. 409-415, 2002.
13.
M. Todd and F. G. Shi, "Validation of a Novel Dielectric Constant Simulation Model", ” Microelectronics J., vol. 33, pp. 627-632, 2002.
14.
H. Vo, M. Todd, F. Shi, A. Shapiro and M. Edwards, "Towards Model-Based Engineering of Underfill Materials: CTE Modeling", ” Microelectronics J., vol. 32, pp. 331-338, 2001.
15.
M. Todd and F. Shi, "Molecular Basis of the Interphase Dielectric Properties of Microelectronic and Optoelectronic Packaging Materials", ” IEEE Trans. Components Packaging Techn., vol. 26, no. 3, pp. 667-672, 2003.
16.
M. Todd and F. Shi, "Characterizing the Interphase Dielectric Constant of Polymer Composite Materials: Effect of Chemical Coupling Agents", ” J. Appl. Phys., vol. 94, pp. 4551-4557, 2003.
17.
K. Lichtenecker and K. Rother, "Die Herleitung des logarith-mischen Mischungsgesetz es aus allgemeinen Prinzipien der stationaren Strömung Physikalische Zeitschrift", vol. 32, pp. 255-260, 1931.
18.
G. Pike and C. Seager, "Percolation and Conductivity: A Computer Study", ” Phys. Rev. B, vol. 10, pp. 1421-1434, 1974.
19.
Y. Yi and M. Sastry, "Analytical Approximation of the Two-Dimensional Percolation Threshold for Fields of Overlapping Ellipses", ” Phys. Rev. E, vol. 66, 2002.
20.
C. Kuo and P. Gupta, "Rigidity and Conductivity Percolation Thresholds in Particulate Composites", ” Acta Metall. Mater., vol. 43, pp. 397-403, 1995.
21.
S. Wang and A. Ogale, "Continuum Space Simulation and Experimental Characterization of Electrical Percolation Behavior of Particulate Composites", ” Composites Sci. Techn., vol. 46, pp. 93-103, 1993.
22.
X. Jing, W. Zhao and L. Lan, "The Effect of Particle Size on Electric Conducting Percolation Threshold in Polymer/Conducting Particle Composites", ” J. Mat. Sci. Letts., vol. 19, pp. 377-379, 2000.
23.
S. Wu, "A Generalized Criterion for Rubber Toughening: The Critical Matrix Ligament Thickness", ” J. Appl. Polymer Sci., vol. 35, pp. 549-561, 1988.
24.
L. Landau and E. Lifshitz, Electrodynamics of Continuous Media, 1984.
25.
H. Looyenga, "Dielectric Constants of Heterogeneous Mixtures", ” Physica, vol. 31, pp. 401-406, 1965.
26.
P. A. M. Steeman and F. H. J. Maurer, An Interlayer Model for the Complex Dielectric Constant of Composites: An Extension to Ellipsoidally Shaped Particles Colloid and Polymer Sci., vol. 270, pp. 1069-1079, 1992.
27.
O. Weiner, "Zur theorie der refraktionskonstanten", pp. 256-277, 1910.
28.
Z. Hashin and S. Shtrikman, "A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials", ” J. Appl. Phys., vol. 33, pp. 3125-3131, 1962.
29.
J. Obrzut, N. Noda and R. Nozaki, "Broadband Dielectric Metrology for Polymer Composite Films", pp. 269-272, 2001.
30.
"Surfacenet Barium Titanate Datasheet Surfacenet GmbH", 2003.
Contact IEEE to Subscribe

References

References is not available for this document.