For BOTH digital and analog optical transmission systems, photodetectors that operate at high power levels are becoming increasingly important. One approach to achieving high performance in 40-Gb/s optical receivers utilizes optical preamplifiers [1]. However, this results in greatly increased signal levels incident on the photodetector. In the analog domain, high power and high frequency optical links such as cable television, phased array antennas, and photonic analog-to-digital converter systems require photodetectors with high dynamic range, which translates to the capability to operate at high photocurrent levels. Unfortunately, as a result of charge buildup in the photodetector, i.e., space-charge effects and thermal considerations, the speed of a photodetector degrades at high current levels. Various device structures have been reported to reduce the space charge in the depletion region, such as uni-traveling-carrier (UTC) photodiodes [2], a partially depleted absorber photodiode [3], and a velocity-matched distributed photodiode [4].
Abstract:
Charge compensation is utilized in an InGaAs-InP uni-traveling-carrier photodiode to mitigate the space-charge effect. A 20-μm-diameter photodiode achieved a bandwidth of...Show MoreMetadata
Abstract:
Charge compensation is utilized in an InGaAs-InP uni-traveling-carrier photodiode to mitigate the space-charge effect. A 20-μm-diameter photodiode achieved a bandwidth of 25 GHz and large-signal 1-dB compression current greater than 90 mA; the output power at 20 GHz was 20 dBm. A smaller /spl sim/100-μm2 photodiode exhibited a bandwidth of 50 GHz and large-signal 1-dB compression current greater than 50 mA. The maximum RF output power at 40 GHz was 17 dBm.
Published in: IEEE Photonics Technology Letters ( Volume: 16, Issue: 3, March 2004)
References is not available for this document.
Select All
1.
P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su and J. Leuthold, "40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km", IEEE Photon. Technol. Lett., vol. 15, pp. 766-768, May 2003.
2.
T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagastuma and T. Furuta, "Uni-traveling-carrier photodiodes", Tech. Dig. Ultrafast Electronics Optoelectronics, pp. 83-87, 1997.
3.
X. Li, S. Semiguel, N. Li, J. C. Campbell, D. A. Tulchinsky and K. J. Williams, "Backside illuminated high saturation current partially depleted absorber photodetectors", Electron. Lett., vol. 39, no. 20, pp. 1466-1467, 2003.
4.
L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, et al., "Velocity-matched distributed photodetecters with high-saturation power and large bandwidth", IEEE Photon. Technol. Lett., vol. 8, pp. 1376-78, Oct. 1996.
5.
K. J. Williams and R. D. Esman, "Design considerations for high-current photodetectors", J. Lightwave Technol., vol. 17, pp. 1443-1454, Aug. 1999.
6.
N. Shimizu, N. Watanaba, T. Furuta and T. Ishibashi, "InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz", IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
7.
H. Ito, T. Ohno, H. Fishimi, T. Furuta, S. Kodama and T. Ishibashi, "60 GHz high output power uni-traveling-carrier photodiodes with integrated bias circuit", Electron. Lett., vol. 36, no. 8, pp. 747-748, 2000.
8.
N. Li, R. Sidu, X. Li, F. Ma, S. Demiguel, X. Zheng, et al., "Charge compensated high saturation current InGaAs/InAlAs uni-traveling-carrier photodiode", Electron. Lett..
9.
H. Ito, H. Fushimi, Y. Muramoto, T. Furuta and T. Ishibashi, "High-power photonic microwave generation at K- and Ka-bands using a uni-traveling-carrier photodiode", J. Lightwave Technol., vol. 20, pp. 1500-1505, Aug. 2002.
10.
D. A. Anderson, N. Aspley, P. Davies and P. L. Giles, "Compensation in heavily doped n-type InP and GaAs", J. Appl. Phys., vol. 58, no. 8, pp. 3060-3067, 1985.
11.
T. J. Maloney and J. Frey, "Transient and steady-state electron transport properties of GaAs and InP", J. Appl. Phys., vol. 48, no. 2, pp. 781-787, 1977.