Abstract:
In real-world applications, screen capturing represents a significant scenario where this process can induce substantial distortion to the original image. Previous method...Show MoreMetadata
Abstract:
In real-world applications, screen capturing represents a significant scenario where this process can induce substantial distortion to the original image. Previous methods for simulating screen-shooting distortion often involved combining different formulas. We found that these simulation methods still have a significant gap compared to real distortions, making it urgently necessary to develop a realistic and credible comprehensive noise layer to achieve robustness against screen-shooting distortion. This paper presents a watermarking scheme capable of withstanding severe screen-shooting distortion. First, a dataset is constructed to train a screen-shooting distortion simulation network based on style transfer. Subsequently, a comprehensive noise layer is built upon this network to achieve robustness against severe screen-shooting distortion. Additionally, this paper incorporates structural re-parameterization techniques into the traditional U-shaped encoder to improve the quality of encoded images. Extensive experiments demonstrate the proposed scheme’s superior performance in terms of robustness and generalization, especially under severe screen-shooting distortion conditions.
Published in: IEEE Transactions on Information Forensics and Security ( Volume: 20)