Loading web-font TeX/Math/Italic
Fast Shortest Path Polyline Smoothing With - Continuity and Bounded Curvature | IEEE Journals & Magazine | IEEE Xplore

Fast Shortest Path Polyline Smoothing With G^{1} Continuity and Bounded Curvature


Abstract:

In this work, we propose the Dubins Path Smoothing (DPS) algorithm, a novel and efficient method for smoothing polylines in motion planning tasks. DPS applies to motion p...Show More

Abstract:

In this work, we propose the Dubins Path Smoothing (DPS) algorithm, a novel and efficient method for smoothing polylines in motion planning tasks. DPS applies to motion planning of vehicles with bounded curvature. In the letter, we show that the generated path: 1) has minimal length, 2) is G^{1} continuous, and 3) is collision-free by construction, under mild hypotheses. We compare our solution with the state-of-the-art and show its convenience both in terms of computation time and of length of the compute path.
Published in: IEEE Robotics and Automation Letters ( Volume: 10, Issue: 4, April 2025)
Page(s): 3182 - 3189
Date of Publication: 11 February 2025

ISSN Information:

References is not available for this document.

I. Introduction

Motion planning is a fundamental task for many applications, ranging from robotic arm manipulation [13] to autonomous vehicle navigation [9]. The goal is to find a feasible (or optimal) path or trajectory to move an agent from a start to a target position, avoiding obstacles.

Select All
1.
E. Bertolazzi, P. Bevilacqua and M. Frego, "Efficient intersection between splines of clothoids", Math. Comput. Simul., vol. 176, pp. 57-72, 2019.
2.
E. Bertolazzi and M. Frego, "A note on robust biarc computation", Comput.-Aided Des. Appl., vol. 16, no. 5, pp. 822-835, 2019.
3.
P. Bevilacqua, M. Frego, E. Bertolazzi, D. Fontanelli, L. Palopoli and F. Biral, "Path planning maximising human comfort for assistive robots", Proc. 2016 IEEE Conf. Control Appl., pp. 1421-1427, 2016.
4.
X. Chen, J. Zhang, M. Yang, L. Zhong and J. Dong, "Continuous-curvature path generation using Fermat's spiral for unmanned marine and aerial vehicles", Proc. 2018 Chin. Control Decis. Conf., pp. 4911-4916, 2018.
5.
Z. Chen and T. Shima, "Shortest Dubins paths through three points", Automatica, vol. 105, pp. 368-375, 2019.
6.
B. K. Choi and S. C. Park, "A pair-wise offset algorithm for 2D point-sequence curve", Comput.-Aided Des., vol. 31, no. 12, pp. 735-745, 1999.
7.
E. D'Amato, I. Notaro and M. Mattei, "Reactive collision avoidance using essential visibility graphs", Proc. 6th Int. Conf. Control Decis. Inf. Technol., pp. 522-527, 2019.
8.
L. E. Dubins, "On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents", Amer. J. Math., vol. 79, no. 3, pp. 497-516, 1957.
9.
M. Frego et al., "Minimum time—Minimum jerk optimal traffic management for AGVs", IEEE Robot. Automat. Lett., vol. 5, no. 4, pp. 5307-5314, Oct. 2020.
10.
M. Frego, P. Bevilacqua, E. Saccon, L. Palopoli and D. Fontanelli, "An iterative dynamic programming approach to the multipoint Markov-Dubins problem", IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 2483-2490, Apr. 2020.
11.
X. Goaoc, H.-S. Kim and S. Lazard, "Bounded-curvature shortest paths through a sequence of points using convex optimization", SIAM J. Comput., vol. 42, no. 2, pp. 662-684, 2013.
12.
H. Hoang, A. K. Tran, L. Nhat, T. Tran, M.-H. Le and D.-T. Tran, "A shortest smooth-path motion planning for a mobile robot with nonholonomic constraints", Proc. 2021 Int. Conf. Syst. Sci. Eng., pp. 145-150, 2021.
13.
K. Jang, S. Kim and J. Park, "Motion planning of mobile manipulator for navigation including door traversal", IEEE Robot. Automat. Lett., vol. 8, no. 7, pp. 4147-4154, Jul. 2023.
14.
S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal motion planning", Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, 2011.
15.
C. Y. Kaya, "Markov–Dubins interpolating curves", Comput. Optim. Appl., vol. 73, no. 2, pp. 647-677, 2019.
16.
H. Marino, P. Salaris and L. Pallottino, "Controllability analysis of a pair of 3D Dubins vehicles in formation", Robot. Auton. Syst., vol. 83, pp. 94-105, 2016.
17.
A. A. Markov, "Some examples of the solution of a special kind of problem on greatest and least quantities", Soobshch. Karkovsk. Mat. Obshch, vol. 1, pp. 250-276, 1887.
18.
H. Niu, A. Savvaris, A. Tsourdos and Z. Ji, "Voronoi-visibility roadmap-based path planning algorithm for unmanned surface vehicles", J. Navigation, vol. 72, no. 4, pp. 850-874, 2019.
19.
S. C. Park and Y. C. Chung, "Mitered offset for profile machining", Comput.-Aided Des., vol. 35, no. 5, pp. 501-505, 2003.
20.
G. Parlangeli, D. D. Palma and R. Attanasi, "A novel approach for 3PDP and real-time via point path planning of Dubins' vehicles in marine applications", Control Eng. Pract., vol. 144, 2024.
21.
G. Parlangeli, "Shortest paths for dubins vehicles in presence of via points", IFAC-PapersOnLine, vol. 52, no. 8, pp. 295-300, 2019.
22.
M. Piazza, E. Bertolazzi and M. Frego, "A non-smooth numerical optimization approach to the three-point Dubins problem (3PDP)", Algorithms, vol. 17, no. 8, 2024.
23.
E. Saccon, P. Bevilacqua, D. Fontanelli, M. Frego, L. Palopoli and R. Passerone, "Robot motion planning: Can GPUs be a game changer?", Proc. IEEE 45th Annu. Comput. Softw. Appl. Conf., pp. 21-30, 2021.
24.
A. Sadeghi and S. L. Smith, "On efficient computation of shortest Dubins paths through three consecutive points", Proc. IEEE 55th Conf. Decis. Control, pp. 6010-6015, 2016.
25.
A. M. Shkel and V. Lumelsky, "Classification of the Dubins set", Robot. Auton. Syst., vol. 34, no. 4, pp. 179-202, 2001.
26.
X. Song and S. Hu, "2D path planning with Dubins-path-based A* algorithm for a fixed-wing UAV", Proc. 3rd IEEE Int. Conf. Control Sci. Syst. Eng., pp. 69-73, 2017.
27.
N. Sturtevant, "Benchmarks for grid-based pathfinding", Trans. Comput. Intell. AI Games, vol. 4, no. 2, pp. 144-148, Jun. 2012.
28.
I. A. Şucan, M. Moll and L. E. Kavraki, "The open motion planning library", IEEE Robot. Automat. Mag., vol. 19, no. 4, pp. 72-82, Dec. 2012, [online] Available: https://ompl.kavrakilab.org.
29.
R. Sáez, D. Toratani, R. Mori and X. Prats, "Generation of RNP approach flight procedures with an RRT* path-planning algorithm", Proc. IEEE/AIAA 42nd Digit. Avionics Syst. Conf., pp. 1-10, 2023.
30.
G. Würsching and M. Althoff, "Robust and efficient curvilinear coordinate transformation with guaranteed map coverage for motion planning", Proc. IEEE Intell. Veh. Symp. (IV), pp. 1-8, 2024.
Contact IEEE to Subscribe

References

References is not available for this document.