Loading web-font TeX/Math/Italic
Suboptimal Joint Multi-Parameter Estimation for Wireless Sensor Networks Over <span class="MathJax_Preview" style="">\kappa-\mu</span><script type="math/tex" id="MathJax-Element-1">\kappa-\mu</script> Fading Channels | IEEE Conference Publication | IEEE Xplore

Suboptimal Joint Multi-Parameter Estimation for Wireless Sensor Networks Over \kappa-\mu Fading Channels


Abstract:

This paper explores joint multi-parameter estimation for intra-vehicle wireless sensor networks (IVWSNs) over \kappa-\mu fading channels. Precise parameter estimation i...Show More

Abstract:

This paper explores joint multi-parameter estimation for intra-vehicle wireless sensor networks (IVWSNs) over \kappa-\mu fading channels. Precise parameter estimation is crucial for reliable transmission and accurate sensing in IVWSNs, yet existing moment-based estimations lack accuracy. To address this, we propose a novel suboptimal multi-parameter estimation algorithm for robust transmission and sensing (SMARTS) based on sequential number-theoretic optimization (SNTO) within the framework of maximum likelihood estimation (MLE). Its performance approaches the Cramér-Rao lower bound (CRLB), and an efficiency-enhancement strategy is introduced to improve real-time applications. Simulation and data analysis demonstrate its accuracy, robustness, and practicality,
Published in: 2024 IEEE SENSORS
Date of Conference: 20-23 October 2024
Date Added to IEEE Xplore: 17 December 2024
ISBN Information:

ISSN Information:

Conference Location: Kobe, Japan
References is not available for this document.

I. Introduction

The transmission and sensing quality of intra-vehicle wireless sensor networks (IVWSNs) hinges on channel characteristics in vehicle-mounted environments [1]. Before establishing a WSN, it is crucial to model the probability distribution of channels and characterize them through channel estimation to enhance its compatibility [2]. In the vehicle environment, dense and unevenly distributed occlusion and reflection objects create small-scale line-of-sight (LOS) and non-line-of-sight (NLOS) composite channels with rich multipath propagation. This complexity requires specialized channel models tailored to IVWSNs, as existing models for indoor [3], [4], outdoor [5], [6], and bus [7] scenarios may not apply directly.

Select All
1.
A. Pandey, P. Tiwary, S. Kumar and S. K. Das, "Fadeloc: Smart device localization for generalized k- µ faded IoT environment", IEEE Trans. Signal Process., vol. 70, pp. 3206-3220, 2022.
2.
S. K. Sharma and M. Chawla, "Compatibility analysis of cluster-based WSN framework for IoT applications", Wirel. Pers. Commun., vol. 131, no. 2, pp. 1365-1380, 2023.
3.
J. W. Wallace and M. A. Jensen, "Modeling the indoor MIMO wireless channel", IEEE Trans. Antennas Propag., vol. 50, no. 5, pp. 591-599, 2002.
4.
K. Haneda, L. Tian, H. Asplund, J. Li, Y. Wang, D. Steer, C. Li, T. Balercia, S. Lee, Y. Kim et al., "Indoor 5G 3GPP-like channel models for office and shopping mall environments", 2016 IEEE International Conference on Communications Workshops (ICC). IEEE, pp. 694-699, 2016.
5.
D. Gesbert, H. Bolcskei, D. A. Gore and A. J. Paulraj, "Outdoor MIMO wireless channels: Models and performance prediction", IEEE Trans. Commun., vol. 50, no. 12, pp. 1926-1934, 2002.
6.
K. Haneda, J. Zhang, L. Tan, G. Liu, Y. Zheng, H. Asplund, J. Li, Y. Wang, D. Steer, C. Li et al., "5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments", 2016 IEEE 83rd vehicular technology conference (VTC spring). IEEE, pp. 1-7, 2016.
7.
A. U. Rahman, U. Ghosh, A. Chandra and A. Prokes, "Channel modelling for 60GHz mmwave communication inside bus", 2018 IEEE Vehicular Networking Conference (VNC). IEEE, pp. 1-6, 2018.
8.
M. D. Yacoub, "The k-µ distribution and the η-µ distribution", IEEE Antennas Propag. Mag., vol. 49, no. 1, pp. 68-81, 2007.
9.
J. Tian, Z. Fan, Z. Ji, X. Li, P. Fei and D. Hou, "Multi-parameter estimation method and closed-form solution study for k-µ channel model", Sensors, vol. 23, no. 10, pp. 4760, 2023.
10.
A. M. O. Ribeiro and E. Conforti, "Asymptotically efficient moment-based estimator of the k parameter for the k-µ distribution", IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 598-601, 2014.
11.
S. L. Cotton, W. G. Scanlon and J. Guy, "The k-µ distribution applied to the analysis of fading in body to body communication channels for fire and rescue personnel", IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 66-69, 2008.
12.
F. P. Batista, R. A. de Souza and A. M. O. Ribeiro, "Maximum likelihood estimator for the α-η-µ fading environment", 2016 IEEE Radio and Wireless Symposium (RWS)., pp. 133-136, 2016.
13.
C. P. Lemos, A. C. P. Veiga and S. A. Fasolo, "Estimation of a-κ-µ mobile fading channel parameters using evolutionary algorithms", Telecommun. Syst., vol. 77, pp. 189-211, 2021.
14.
I. J. Myung, "Tutorial on maximum likelihood estimation", J. Math. Psychol., vol. 47, no. 1, pp. 90-100, 2003.
15.
O. S. Badarneh, "On the MGFs of generalized η-µ and κ-µ fading channels", econd International Conference on Technological Advances in Electrical Electronics and Computer Engineering (TAEECE), pp. 137-140, 2014.
16.
K.-T. Fang and Y. Wang, Number-theoretic methods in statistics., CRC Press, vol. 51, 1993.
17.
R. Cogliatti, R. A. A. de Souza and M. D. Yacoub, "Practical highly efficient algorithm for generating κ-µ and η-µ variates and a near-100% efficient algorithm for generating α-µ variates", IEEE Commun. Lett., vol. 16, no. 11, pp. 1768-1771, 2012.

Contact IEEE to Subscribe

References

References is not available for this document.