Loading [MathJax]/extensions/MathZoom.js
Learning-to-Adaptation for Security Service in Industrial IoT: An AI-Enabled Slice-Specific Solution | IEEE Journals & Magazine | IEEE Xplore

Learning-to-Adaptation for Security Service in Industrial IoT: An AI-Enabled Slice-Specific Solution


Abstract:

Network slicing is the key enabler for the 5G Industrial Internet of Things (IIoT), allowing tailored services and security guarantees for vertical industries. With the a...Show More

Abstract:

Network slicing is the key enabler for the 5G Industrial Internet of Things (IIoT), allowing tailored services and security guarantees for vertical industries. With the advent of 5G-Advanced (5G-A) and 6G era, the number of slices will increase significantly, leading to more diverse security requirements given different slice features. To provide adaptive security management spanning multiple slices in IIoT, this paper proposes a novel slice-specific secure IIoT (SSIOT) architecture with an AI-enabled solution. The SSIOT architecture separates the control and data planes, where the control plane orchestrates the Security Service Function Chains (SSFC) across network slices and the data plane analyzes the slice-specific features like traffic patterns, resource SLA guarantees, and Virtual Security Network Function (VSNF) dependencies. To extract these spatial-temporal features from the dynamic IIoT environments, we facilitate the powerful deep reinforcement learning (DRL) methods and propose a structural GS2L approach. GS2L is maliciously designed with the core principles of graph convolutional network (GCN) and Gated Recurrent Unit (GRU), enabling a thorough understanding of physical resource distribution and the request dynamics across slices. Extensive experiments are conducted in diverse IIoT slices with the real-world USNet and fat-tree topologies. Simulation results demonstrate that GS2L outperforms state-of-the-art learning and heuristic benchmarks, showcasing an overall 15.2% improvement with efficient and stable resource utilization.
Published in: IEEE Transactions on Services Computing ( Volume: 18, Issue: 1, Jan.-Feb. 2025)
Page(s): 239 - 252
Date of Publication: 22 November 2024

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

The Industrial Internet of Things (IIoT) with the 5G technology holds the key to demanding high-performance and flexible networked manufacturing prerequisites [1], [2]. A fundamental innovation of 5G is network slicing, which allows operators to create isolated end-to-end slices over the physical network [3]. By utilizing network slices for specialized services and applications in vertical industries, the IIoT provides tailored services to different scenarios per guaranteed service-level agreements (SLA) [4], [5], [6].

Select All
1.
A. Amjad, F. Azam, M. W. Anwar and W. H. Butt, "A systematic review on the data interoperability of application layer protocols in industrial IoT", IEEE Access, vol. 9, pp. 96528-96545, 2021.
2.
W. Mao, Z. Zhao, Z. Chang, G. Min and W. Gao, "Energy-efficient industrial Internet of Things: Overview and open issues", IEEE Trans. Ind. Informat., vol. 17, no. 11, pp. 7225-7237, Nov. 2021.
3.
A. E. Kalør, R. Guillaume, J. J. Nielsen, A. Mueller and P. Popovski, "Network slicing in industry 4.0 applications: Abstraction methods and end-to-end analysis", IEEE Trans. Ind. Inform., vol. 14, no. 12, pp. 5419-5427, Dec. 2018.
4.
A. Mahmood et al., "Industrial IoT in 5G-and-Beyond networks: Vision architecture and design trends", IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 4122-4137, Jun. 2022.
5.
J. Li, J. Wu, C. Zhang, Q. Sun, Y. Huang and X. You, "Hierarchical intelligent radio access network slicing for differential service level agreement guaranteeing", IEEE Trans. Ind. Informat., vol. 20, no. 3, pp. 4124-4136, Mar. 2024.
6.
N. H. Mahmood, G. Berardinelli, E. J. Khatib, R. Hashemi, C. De Lima and M. Latva-aho, "A functional architecture for 6G special-purpose industrial IoT networks", IEEE Trans. Ind. Informat., vol. 19, no. 3, pp. 2530-2540, Mar. 2023.
7.
S. K. Taskou, M. Rasti and E. Hossain, "End-to-end resource slicing for coexistence of eMBB and URLLC services in 5G-Advanced/6G networks", IEEE Trans. Mobile Comput., vol. 23, no. 7, pp. 8015-8032, Jul. 2024.
8.
S. Behrad, E. Bertin, S. Tuffin and N. Crespi, "5G-SSAAC: Slice-specific authentication and access control in 5G", Proc. IEEE Conf. Netw. Softwarization, pp. 281-285, 2019.
9.
A. K. Sutrala et al., "Authenticated key agreement scheme with user anonymity and untraceability for 5G-Enabled softwarized industrial cyber-physical systems", IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 2316-2330, Mar. 2022.
10.
M. N. Aman, U. Javaid and B. Sikdar, "Security function virtualization for IoT applications in 6G networks", IEEE Commun. Standards Mag., vol. 5, no. 3, pp. 90-95, Sep. 2021.
11.
R. Doriguzzi-Corin, S. Scott-Hayward, D. Siracusa and E. Salvadori, "Application-centric provisioning of virtual security network functions", Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined Netw., pp. 276-279, 2017.
12.
D. Dwiardhika and T. Tachibana, "Optimal construction of service function chains based on security level for improving network security", IEEE Access, vol. 7, pp. 145807-145815, 2019.
13.
A. Shameli-Sendi, Y. Jarraya, M. Pourzandi and M. Cheriet, "Efficient provisioning of security service function chaining using network security defense patterns", IEEE Trans. Services Comput., vol. 12, no. 4, pp. 534-549, Jul./Aug. 2019.
14.
W. Qiao et al., "A novel method for resource efficient security service chain embedding oriented to cloud datacenter networks", IEEE Access, vol. 9, pp. 77307-77324, 2021.
15.
Y. Wu, H. -N. Dai, H. Wang, Z. Xiong and S. Guo, "A survey of intelligent network slicing management for industrial IoT: Integrated approaches for smart transportation smart energy and smart factory", IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 1175-1211, 2022.
16.
S. F. Abedin, A. Mahmood, N. H. Tran, Z. Han and M. Gidlund, "Elastic O-RAN slicing for industrial monitoring and control: A. distributed matching game and deep reinforcement learning approach", IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 10808-10822, Oct. 2022.
17.
L. Ji et al., "Dynamic network slicing orchestration for remote adaptation and configuration in industrial IoT", IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 4297-4307, Jun. 2022.
18.
J. Tang, J. Nie, Z. Xiong, J. Zhao, Y. Zhang and D. Niyato, "Slicing-based reliable resource orchestration for secure software-defined edge-cloud computing systems", IEEE Internet Things J., vol. 9, no. 4, pp. 2637-2648, Feb. 2022.
19.
D. A. Chekired, M. A. Togou, L. Khoukhi and A. Ksentini, "5G-Slicing-Enabled scalable SDN core network: Toward an ultra-low latency of autonomous driving service", IEEE J. Sel. Areas Commun., vol. 37, no. 8, pp. 1769-1782, Aug. 2019.
20.
A. De Domenico, Y. -F. Liu and W. Yu, "Optimal virtual network function deployment for 5G network slicing in a hybrid cloud infrastructure", IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 7942-7956, Dec. 2020.
21.
H. Huang, P. Li, S. Guo, W. Liang and K. Wang, "Near-optimal deployment of service chains by exploiting correlations between network functions", IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 585-596, 2020.
22.
R. Lin, S. Yu, S. Luo, X. Zhang, J. Wang and M. Zukerman, "Column generation based service function chaining embedding in multi-domain networks", IEEE Trans. Cloud Comput., vol. 11, no. 1, pp. 185-199, 2023.
23.
R. Lin, L. He, S. Luo and M. Zukerman, "Energy-aware service function chaining embedding in NFV networks", IEEE Trans. Services Comput., vol. 16, no. 2, pp. 1158-1171, Mar./Apr. 2023.
24.
H. Li et al., "Slice-based service function chain embedding for end-to-end network slice deployment", IEEE Trans. Netw. Service Manag., vol. 20, no. 3, pp. 3652-3672, Sep. 2023.
25.
Y. Liu, H. Lu, X. Li, Y. Zhang, L. Xi and D. Zhao, "Dynamic service function chain orchestration for NFV/MEC-Enabled IoT networks: A deep reinforcement learning approach", IEEE Internet Things J., vol. 8, no. 9, pp. 7450-7465, May 2021.
26.
G. Ishigaki, S. Devic, R. Gour and J. P. Jue, "DeepPR: Progressive recovery for interdependent VNFs with deep reinforcement learning", IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2386-2399, Oct. 2020.
27.
H. R. Khezri et al., "Deep reinforcement learning for dynamic reliability aware NFV-Based service provisioning", Proc. IEEE Glob. Commun. Conf., pp. 1-6, 2019.
28.
G. Li, H. Zhou, B. Feng, Y. Zhang and S. Yu, "Efficient provision of service function chains in overlay networks using reinforcement learning", IEEE Trans. Cloud Comput., vol. 10, no. 1, pp. 383-395, 2022.
29.
Q. Fan, P. Pan, X. Li, S. Wang, J. Li and J. Wen, "DRL-D: Revenue-aware online service function chain deployment via deep reinforcement learning", IEEE Trans. Netw. Service Manag., vol. 19, no. 4, pp. 4531-4545, Dec. 2022.
30.
D. Xiao, J. A. Zhang, X. Liu, Y. Qu, W. Ni and R. P. Liu, "A two-stage GCN-Based deep reinforcement learning framework for SFC embedding in multi-datacenter networks", IEEE Trans. Netw. Service Manag., vol. 20, no. 4, pp. 4297-4312, Dec. 2023.
Contact IEEE to Subscribe

References

References is not available for this document.