Abstract:
The gain spectrum in semiconductor lasers is affected by the intensity-dependent nonlinear effects taking place due to a finite intraband relaxation time of charge carrie...Show MoreMetadata
Abstract:
The gain spectrum in semiconductor lasers is affected by the intensity-dependent nonlinear effects taking place due to a finite intraband relaxation time of charge carriers. We obtain an analytic expression for the nonlinear gain in multimode semiconductor lasers using the density-matrix formalism. In general, the nonlinear gain is found to consist of the symmetric and asymmetric components. The asymmetry does not have its origin in the carrier-induced index change, but is related to details of the gain spectrum. The general expression for the nonlinear gain is used to discuss the range of single-longitudinal-mode operation of distributed feedback lasers. It is also used to obtain an analytic expression for the self-saturation coefficient and to compare the predicted value to the experimental value for both GaAs and InGaAsP lasers. The agreement between the theoretical and the experimental values supports the hypothesis that spectral hole burning is the dominant mechanism for the gain nonlinearities in semiconductor lasers.
Published in: IEEE Journal of Quantum Electronics ( Volume: 23, Issue: 6, June 1987)
References is not available for this document.
Select All
1.
W. E. Lamb, "Theory of an optical maser", Phys. Rev., vol. 134, pp. A1429-A1450, June 1964.
2.
M. Sargent, M. O. Scully and W. E. Lamb, Laser Physics. Reading, MA:Addison-Wesley, 1974.
3.
Y. Nishimura and Y. Nishimura, "Spectral hole-burning and nonlinear-gain decrease in a band-to-level transition semiconductor laser", IEEE J. Quantum Electron., vol. QE-9, pp. 1011-1019, Oct. 1973.
4.
M. Yamada and Y. Suematsu, "Analysis of gain suppression in undoped injection lasers", J. Appl. Phys., vol. 52, pp. 2653-2664, Apr. 1981.
5.
R. F. Kazarinov, C. H. Henry and R. A. Logan, "Longitudinal mode self-stabilization in semiconductor lasers", J. Appl. Phys., vol. 53, pp. 4631-4644, July 1982.
6.
M. Asada and Y. Suematsu, "Density-matrix theory of semiconductor lasers with relaxation broadening model—Gain and gain-suppression in semiconductor lasers", IEEE J. Quantum Electron., vol. QE-21, pp. 434-442, May 1985.
7.
D. J. Channin, "Effect of gain saturation on injection laser switching", J. Appl. Phys., vol. 50, pp. 3858-3860, June 1979.
8.
K. Furuya, Y. Suematsu, Y. Sakakibara and M. Yamada, "Influence of intraband electronic relaxation on relaxation oscillation of injection lasers", Trans. IECE, vol. E62, pp. 241-245, Apr. 1979.
9.
M. J. Adams and M. Osinski, "Influence of spectral hole-burning on quaternary laser transients", Electron. Lett., vol. 19, pp. 627-628, Aug. 1983.
10.
J. Manning, R. Olshansky, D. M. Fye and W. Powazinik, "Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers", Electron. Lett., vol. 21, pp. 496-497, May 1985.
11.
R. S. Tucker, "High-speed modulation of semiconductor lasers", J. Lightwave Technol., vol. LT-3, pp. 1180-1192, Dec. 1985.
12.
Τ. L. Koch and R. A. Linke, "Effect of nonlinear gain reduction on semiconductor laser wavelength chirping", Appl. Phys. Lett., vol. 48, pp. 613-615, Mar. 1986.
13.
J. E. Bowers, B. R. Hemenway, A. H. Gnauck and D. P. Wilt, "High-speed constricted-mesa lasers", IEEE J. Quantum Electron., vol. QE-22, pp. 833-844, June 1986.
14.
R. Olshansky, D. M. Fye, J. Manning and C. B. Su, "Effect of nonlinear gain on the bandwidth of semiconductor lasers", Electron. Lett., vol. 21, pp. 721-722, Aug. 1985.
15.
G. P. Agrawal, "Effect of nonlinear gain on single-frequency behavior Of semiconductor lasers", Electron. Lett., vol. 22, pp. 696-697, June 1986.
16.
A. P. Bogatov, P. G. Eliseev and B. N. Sverdlov, "Anomalous interaction of spectral modes in a semiconductor laser", IEEE J. Quantum Electron., vol. QE-11, pp. 510-515, July 1975.
17.
H. Ishikawa, M. Yano and M. Takusagawa, "Mechanism of asymmetric longitudinal mode competition in InGaAsP/InP lasers", Appl. Phys. Lett., vol. 40, pp. 553-555, Apr. 1982.
18.
B. Zee, "Broadening mechanism in semiconductor (GaAs) lasers: Limitations to single mode power emission", IEEE J. Quantum Electron., vol. QE-14, pp. 727-736, Oct. 1978.
19.
D. Kasemset and C. G. Fonstad, "Gain saturation in semiconductor lasers: Theory and experiment", IEEE J. Quantum Electron., vol. QE-18, pp. 1078-1083, July 1982.
20.
G. P. Agrawal, "Highly nondegenerate four-wave mixing in semiconductor lasers due to spectral hole-burning", Appl. Phys. Lett..
21.
Υ. Nishimura, "Electron scattering times in GaAs injection lasers", Japan. J. Appl. Phys., vol. 13, pp. 109-117, Jan. 1974.
22.
M. Yamada, H. Ishiguro and H. Nagato, "Estimation of the intraband relaxation time in undoped AlGaAs injection lasers", Japan. J. Appl. Phys., vol. 19, pp. 135-142, Jan. 1980.
23.
B. C. Johnson and A. Mooradian, "Observation of gain compression in GaAlAs diode laser through a picosecond transmission measurement", Appl. Phys. Lett., vol. 49, pp. 1135-1137, Nov. 1986.
24.
C. B. Su and V. A. Lanzisera, "Ultra-high-speed modulation of 1.3-μm InGaAsP diode lasers", IEEE J. Quantum Electron., vol. QE-22, pp. 1568-1578, Sept. 1986.