Abstract:
The gain spectrum in semiconductor lasers is affected by the intensity-dependent nonlinear effects taking place due to a finite intraband relaxation time of charge carrie...Show MoreMetadata
Abstract:
The gain spectrum in semiconductor lasers is affected by the intensity-dependent nonlinear effects taking place due to a finite intraband relaxation time of charge carriers. We obtain an analytic expression for the nonlinear gain in multimode semiconductor lasers using the density-matrix formalism. In general, the nonlinear gain is found to consist of the symmetric and asymmetric components. The asymmetry does not have its origin in the carrier-induced index change, but is related to details of the gain spectrum. The general expression for the nonlinear gain is used to discuss the range of single-longitudinal-mode operation of distributed feedback lasers. It is also used to obtain an analytic expression for the self-saturation coefficient and to compare the predicted value to the experimental value for both GaAs and InGaAsP lasers. The agreement between the theoretical and the experimental values supports the hypothesis that spectral hole burning is the dominant mechanism for the gain nonlinearities in semiconductor lasers.
Published in: IEEE Journal of Quantum Electronics ( Volume: 23, Issue: 6, June 1987)
Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (92)
Select All
1.
Lukas Uhlig, Dominic J. Kunzmann, Ulrich T. Schwarz, "Mode Competition Between Longitudinal and Lateral Modes in III-Nitride Broad-Ridge Laser Diodes", IEEE Journal of Selected Topics in Quantum Electronics, vol.31, no.2: Pwr. and Effic. Scaling in Semiconductor Lasers, pp.1-12, 2025.
2.
Jia-Yan Tang, Bao-De Lin, Jingyi Yu, Xuming He, Cheng Wang, "Parallel Time-Delay Reservoir Computing With Quantum Dot Lasers", IEEE Journal of Quantum Electronics, vol.58, no.2, pp.1-9, 2022.
3.
Zujie Fang, Fang Wei, Kang Ying, Qing Ye, Haiwen Cai, "Intensity Noise of Semiconductor Lasers Induced by Inter-Mode Beating", IEEE Journal of Quantum Electronics, vol.57, no.2, pp.1-10, 2021.
4.
F. Monifi, S. Shahin, F. Vallini, Y. Fainman, M. I. Rabinovich, "Brain inspired photonic motif networks", 2016 IEEE International Conference on Rebooting Computing (ICRC), pp.1-3, 2016.
5.
Shui Ying Xiang, Ai Jun Wen, Hao Zhang, Jia Fu Li, Hui Xing Zhang, Lin Lin, "Effect of Gain Nonlinearity on Time Delay Signature of Chaos in External-Cavity Semiconductor Lasers", IEEE Journal of Quantum Electronics, vol.52, no.4, pp.1-7, 2016.
6.
Andreas Hangauer, Gerard Wysocki, "Gain Compression and Linewidth Enhancement Factor in Mid-IR Quantum Cascade Lasers", IEEE Journal of Selected Topics in Quantum Electronics, vol.21, no.6, pp.74-84, 2015.
7.
Vivek Krishnamurthy, Yijing Chen, Seng-Tiong Ho, "Photonic Transistor Design Principles for Switching Gain $>=2$ ", Journal of Lightwave Technology, vol.31, no.13, pp.2086-2098, 2013.
8.
Vivek Krishnamurthy, Koustuban Ravi, Seng-Tiong Ho, "Analytical Framework for the Steady State Analysis of Wavelength-Dependent and Intensity-Dependent Interaction of Multiple Monochromatic Beams in Semiconductor Photonic Structures With Multiple Active and Passive Sections", IEEE Journal of Quantum Electronics, vol.48, no.10, pp.1282-1299, 2012.
9.
Takaaki Kakitsuka, Shinji Matsuo, Kiichi Hamamoto, Toru Segawa, Hiroyuki Suzuki, Ryo Takahashi, "Injection-Locked Flip-Flop Operation of a DBR Laser", IEEE Photonics Technology Letters, vol.23, no.17, pp.1261-1263, 2011.
10.
Hui Lv, Chuyun Huang, Yonglin Yu, Dexiu Huang, "Microwave Lumped-Element Circuit Modeling for an SOA-Integrated SGDBR Laser", 2011 Symposium on Photonics and Optoelectronics (SOPO), pp.1-4, 2011.
11.
Silvello Betti, Elisa Duca, "Evaluating SOA Nonlinearity Effects by High-Order Susceptibility on Constant Envelope Signals in WDM Systems", Journal of Lightwave Technology, vol.27, no.21, pp.4855-4862, 2009.
12.
Chris Born, Guohui Yuan, Zhuoran Wang, Siyuan Yu, "Nonlinear Gain in Semiconductor Ring Lasers", IEEE Journal of Quantum Electronics, vol.44, no.11, pp.1055-1064, 2008.
13.
Jungho Kim, Matthias Laemmlin, Christian Meuer, Dieter Bimberg, Gadi Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers", IEEE Journal of Quantum Electronics, vol.44, no.7, pp.658-666, 2008.
14.
Fabien Kefelian, Philippe Gallion, "Locking and Noise Properties of Multisection Semiconductor Lasers With Optical Injection. Application to Fabry–PÉrot and DFB Cavities", IEEE Journal of Quantum Electronics, vol.44, no.6, pp.547-560, 2008.
15.
M.K. Davis, G. Ghislotti, S. Balsamo, D.A.S. Loeber, G.M. Smith, M.H. Hu, Hong Ky Nguyen, "Grating stabilization design for high-power 980-nm semiconductor pump lasers", IEEE Journal of Selected Topics in Quantum Electronics, vol.11, no.5, pp.1197-1208, 2005.
16.
G. Sialm, D. Lenz, D. Erni, G.-L. Bona, C. Kromer, M.X. Jungo, T. Morf, F. Ellinger, H. Jackel, "Comparison of simulation and measurement of dynamic fiber-coupling effects for high-speed multimode VCSELs", Journal of Lightwave Technology, vol.23, no.7, pp.2318-2330, 2005.
17.
C. Born, M. Sorel, Siyuan Yu, "Linear and nonlinear mode interactions in a semiconductor ring laser", IEEE Journal of Quantum Electronics, vol.41, no.3, pp.261-271, 2005.
18.
Yang Liu, Wei-Choon Ng, B. Klein, K. Hess, "Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers", IEEE Journal of Quantum Electronics, vol.39, no.1, pp.99-108, 2003.
19.
A. Ferrari, G. Ghislotti, S. Balsamo, V. Spano, F. Trezzi, "Subkilohertz fluctuations and mode hopping in high-power grating-stabilized 980-nm pumps", Journal of Lightwave Technology, vol.20, no.3, pp.515-518, 2002.
20.
D. Bhattacharyya, E.A. Avrutin, A.C. Bryce, J.H. Marsh, D. Bimberg, F. Heinrichsdorff, V.M. Ustinov, S.V. Zaitsev, N.N. Ledentsov, P.S. Kop'ev, Zh.I. Alferov, A.I. Onischenko, E.P. O'Reilly, "Spectral and dynamic properties of InAs-GaAs self-organized quantum-dot lasers", IEEE Journal of Selected Topics in Quantum Electronics, vol.5, no.3, pp.648-657, 1999.
21.
M.A. Summerfield, R.S. Tucker, "Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers", IEEE Journal of Selected Topics in Quantum Electronics, vol.5, no.3, pp.839-850, 1999.
22.
L. Ramunno, J.E. Sipe, "Dynamical model of directly modulated semiconductor laser diodes", IEEE Journal of Quantum Electronics, vol.35, no.4, pp.624-634, 1999.
23.
Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, A. Suzuki, "Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers", IEEE Journal of Quantum Electronics, vol.34, no.10, pp.1970-1978, 1998.
24.
Y. Matsui, H. Murai, A. Suzuki, Y. Ogawa, "Suppression of spectral hole burning and carrier transport effects in strain-compensated InGaAlAs-InGaAsP MQW lasers", 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398), vol.1, pp.633-634 vol.1, 1998.
25.
J.K. White, J.V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection", IEEE Journal of Quantum Electronics, vol.34, no.8, pp.1469-1473, 1998.
26.
V.V. Lysak, "Nonlinear effects of the optical gain in the quantum well laser diodes", MMET Conference Proceedings. 1998 International Conference on Mathematical Methods in Electromagnetic Theory. MMET 98 (Cat. No.98EX114), vol.2, pp.914-916 vol.2, 1998.
27.
J.-L. Vey, P. Gallion, "Semiclassical model of semiconductor laser noise and amplitude noise squeezing. II. Application to complex laser structures", IEEE Journal of Quantum Electronics, vol.33, no.11, pp.2105-2110, 1997.
28.
Jian Wang, H.C. Schweizer, "A quantitative comparison of the classical rate-equation model with the carrier heating model on dynamics of the quantum-well laser: the role of carrier energy relaxation, electron-hole interaction, and Auger effect", IEEE Journal of Quantum Electronics, vol.33, no.8, pp.1350-1359, 1997.
29.
F. Girardin, Guang-Hua Duan, "Characterization of semiconductor lasers by spontaneous emission measurements", IEEE Journal of Selected Topics in Quantum Electronics, vol.3, no.2, pp.461-470, 1997.
30.
Tran Thi Bich-Ha, J.-C. Mollier, "Noise equivalent circuit of a two-mode semiconductor laser with the contribution of both the linear and the nonlinear gain", IEEE Journal of Selected Topics in Quantum Electronics, vol.3, no.2, pp.304-308, 1997.
Cites in Papers - Other Publishers (110)
1.
Satoshi Ebisawa, "Effects of Gain Saturation on Orbital Instability of Chaotic Laser Diode with External Pseudorandom Signal", Photonics, vol.11, no.10, pp.954, 2024.
2.
Lukas Uhlig, Dominic J. Kunzmann, Ulrich T. Schwarz, "Characterization of Lateral and Longitudinal Mode Competition in Blue InGaN Broad‐Ridge Laser Diodes", physica status solidi (a), pp.2200751, 2023.
3.
Shahab Abdollahi, Pablo Marin-Palomo, Martin Virte, "Mode-coupling effects in an optically-injected dual-wavelength laser", Optics Express, vol.30, no.18, pp.32447, 2022.
4.
D. V. Ushakov, A. A. Afonenko, R. A. Khabibullin, V. K. Kononenko, I. S. Manak, "Gain saturation effects in THz quantum cascade lasers", Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, vol.58, no.2, pp.237, 2022.
5.
"Optical Transmitters", Fiber‐Optic Communication Systems, pp.67, 2021.
6.
N. Nair, K. Hu, M. Berrill, K. Wiesenfeld, Y. Braiman, "Using Disorder to Overcome Disorder: A Mechanism for Frequency and Phase Synchronization of Diode Laser Arrays", Physical Review Letters, vol.127, no.17, 2021.
7.
Reem Al-Otaibi, Moustafa Ahmed, "Modelling of intensity noise, frequency noise and linewidth of semiconductor laser and their dependence on optical gain formulation", Pramana, vol.95, no.3, 2021.
8.
Moustafa Ahmed, Ahmed Bakry, Ahmed Alshahrie, Hamed Dalir, "Use of external optical feedback to stabilize multimode hopping and reduce intensity noise in long-wavelength semiconductor laser", Optical and Quantum Electronics, vol.53, no.5, 2021.
9.
Tamer Rizk, Alaa Mahmoud, Mohamed Abdel-Rahman, Moustafa Ahmed, "Modulation performance of multimode high-speed semiconductor laser", Journal of Optics, vol.50, no.1, pp.55, 2021.
10.
Lukas Uhlig, Matthias Wachs, Dominic J. Kunzmann, Ulrich T. Schwarz, "Spectral-temporal dynamics of (Al,In)GaN laser diodes", Optics Express, vol.28, no.2, pp.1771, 2020.
11.
E. Kuhn, A. Thränhardt, "Modeling mode competition in laser diodes", Optical and Quantum Electronics, vol.51, no.6, 2019.
12.
Niketh Nair, Erik Bochove, Yehuda Braiman, "Almost perfect in-phase and anti-phase chaotic and periodic phase synchronization in large arrays of diode lasers", Optics Communications, vol.430, pp.104, 2019.
13.
O.M. Kharraz, A.S.M. Supa'at, A. Atieh, A.K. Zamzuri, M.A. Mahdi, "Enhanced gain saturation model of non-linear semiconductor optical amplifiers", IET Optoelectronics, vol.12, no.6, pp.263-268, 2018.
14.
T. Fordos, H. Jaffres, K. Postava, M. S. Seghilani, A. Garnache, J. Pistora, H. J. Drouhin, "Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism", Physical Review A, vol.96, no.4, 2017.
15.
Philippe Gallion, "Applications to Optical Communication", Micro? and Nanophotonic Technologies, pp.291, 2017.
16.
Fan Liu, Rui Zhou, Jialin Zhao, Kai Shi, Yonglin Yu, Liam P. Barry, "Effect of nonlinear gain on the phase noise of Y-branch lasers", Optical and Quantum Electronics, vol.49, no.3, 2017.
17.
S. Shahin, F. Vallini, F. Monifi, M. Rabinovich, Y. Fainman, "Heteroclinic dynamics of coupled semiconductor lasers with optoelectronic feedback", Optics Letters, vol.41, no.22, pp.5238, 2016.
18.
Ivan Aldaya, Gabriel Campuzano, Gerardo Casta?on, "Simultaneous generation of wavelength division multiplexing PON and RoF signals using a hybrid mode-locked laser", Optical Fiber Technology, vol.23, pp.53, 2015.
19.
Sadiq Jaafar Kadhim, Ali Hadi Hassan, Hassan Abid Yasser, "Analytical Model of Four-Wave Mixing in Semiconductor Optical Amplifier", Arabian Journal for Science and Engineering, vol.39, no.1, pp.557, 2014.
20.
Ivan Aldaya, Gabriel Campuzano, Christophe Gosset, Cheng Wang, Frédéric Grillot, Gerardo Castañón, "Impact of the gain model on the stability assessment in semiconductor DFB lasers", Physics and Simulation of Optoelectronic Devices XXII, vol.8980, pp.89801X, 2014.
21.
Thomas Weig, Thomas Hager, Georg Brüderl, Uwe Strauss, Ulrich T. Schwarz, "Longitudinal mode competition and mode clustering in (Al,In)GaN laser diodes", Optics Express, vol.22, no.22, pp.27489, 2014.
22.
Krassimir Panajotov, Franco Prati, "Polarization Dynamics of VCSELs", VCSELs, vol.166, pp.181, 2013.
23.
V. Krishnamurthy, Yijing Chen, S. T. Ho, "Steady state design of photonic transistor to achieve a switching gain>=3 dB", Micro/Nano Materials, Devices, and Systems, vol.8923, pp.89233K, 2013.
24.
Laurent Chusseau, Fabrice Philippe, Pierre Viktorovitch, Xavier Letartre, "Mode competition in a dual-mode quantum-dot semiconductor microlaser", Physical Review A, vol.88, no.1, 2013.
25.
Hui Lv, Yonglin Yu, "Modulation response analysis for a SOA-integrated SGDBR laser by microwave lumped-element circuit modeling approach", Optik - International Journal for Light and Electron Optics, vol.124, no.2, pp.152, 2013.
26.
José A.P. Morgado, Adolfo V.T. Cartaxo, "Extended Koch's model for chirp assessment in semiconductor singlemode lasers operating at high currents", Optics & Laser Technology, vol.44, no.8, pp.2403, 2012.
27.
Govind P. Agrawal, "Optical Transmitters" in Fiber-Optic Communication Systems, pp.79-127, 2011.
28.
Lili Wang, Jianhua Ren, Gang Wang, Shuyan Liu, Peng Zhang, Weiwei Gu, "Simulation of wavelength conversion based on integrated saturable absorber", Applied Optics, vol.49, no.8, pp.1196, 2010.
29.
M. Ahmed, M. Yamada, "Inducing single-mode oscillation in FabryߝPerot InGaAsP lasers by applying external optical feedback", IET Optoelectronics, vol.4, no.3, pp.133-141, 2010.
30.
S. P. Higgins, A. J. Vickers, "Modelling chirp as a function of reflectivity in electroabsorption modulated lasers (EML)", physica status solidi (c), vol.3, no.3, pp.427, 2006.