Loading [MathJax]/extensions/MathMenu.js
Bayesian Optimization-Based Interval Type-2 Fuzzy Neural Network for Furnace Temperature Control | IEEE Journals & Magazine | IEEE Xplore

Bayesian Optimization-Based Interval Type-2 Fuzzy Neural Network for Furnace Temperature Control


Abstract:

The furnace temperature (FT) control is the key for ensuring the stable operation and effective pollution reduction in municipal solid waste incineration (MSWI) processes...Show More

Abstract:

The furnace temperature (FT) control is the key for ensuring the stable operation and effective pollution reduction in municipal solid waste incineration (MSWI) processes. However, conventional control strategies encounter challenges in effectively managing FT due to uncertainties associated with material composition, feeding modes, and equipment maintenance. In response to these challenges, this article introduces a control approach utilizing a Bayesian optimization-based interval type-2 fuzzy neural network (BO-IT2FNN), which achieves offline optimization and online control through the FT controller constructed by IT2FNN. In offline optimization process, the BO algorithm is used to optimize the learning rate of multiple types parameter of IT2FNN controller. In the online control process, fine-tuned by gradient descent method with multiple LR for adaptability. In addition, the stability of control system is confirmed using theorem of Lyapunov, providing the theoretical foundation. Experiments with real MSWI data, tested on a hardware-in-loop platform, prove the effectiveness of the proposed method.
Published in: IEEE Transactions on Industrial Informatics ( Volume: 21, Issue: 1, January 2025)
Page(s): 505 - 514
Date of Publication: 24 September 2024

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

The amount of municipal solid waste (MSW) has risen sharply with economic growth and urbanization [1], leading to widespread “garbage siege” problems in many cities [2]. Unprocessed MSW challenges environmental cleanup and sustainable growth [1]. The MSW incineration (MSWI) process, focusing on waste reduction, resource utilization, and harmless treatment, has gained importance. Developed countries like Europe, America, and Japan have advanced MSWI systems [3], but China faces unique issues due to its climate, lifestyle, and economic status. These include unpredictable waste composition, varying calorific values, and moisture levels, making imported automatic combustion control systems less effective. Currently, MSWI in China mainly uses manual control [1], affected by limited energy and varying expertise, limiting consistent operation. Therefore, it is necessary to conduct intelligent control research on furnace temperature (FT) based on the specific situation in China to overcome the difficulties in process control [4], [5].

Select All
1.
J. Tang, H. Xia, W. Yu and J. F. Qiao, "Research status and prospects of intelligent optimization control for municipal solid waste incineration process", Acta Automatica Sinica, vol. 49, no. 10, pp. 2019-2059, 2023.
2.
A. Gómez-Sanabria, G. Kiesewetter, Z. Klimont, W. Schoepp and H. Haberl, "Potential for future reductions of global GHG and air pollutants from circular waste management systems", Nat. Commun., vol. 13, no. 1, pp. 1-12, 2022.
3.
C. Zeng, L. Yan and D. Wang, "Application of fly ash and slag generated by incineration of municipal solid waste in concrete", Adv. Mater. Sci. Eng., no. 1, 2020.
4.
K. Huang, Y. Tang, X. Liu, D. Wu, C. Yang and W. Gui, "Knowledge-informed neural network for nonlinear model predictive control with industrial applications", IEEE Trans. Syst. Man Cybern.: Syst., vol. 54, no. 4, pp. 2241-2253, Apr. 2024.
5.
P. Zhou, S. Zhang, L. Wen, J. Fu, T. Chai and H. Wang, "Kalman filter-based data-driven robust model-free adaptive predictive control of a complicated industrial process", IEEE Trans. Automat. Sci. Eng., vol. 19, no. 2, pp. 788-803, Apr. 2022.
6.
P. Zhou, B. Gao, S. Wang and T. Chai, "Identification of abnormal conditions for fused magnesium melting process based on deep learning and multisource information fusion", IEEE Trans. Ind. Electron., vol. 69, no. 3, pp. 3017-3026, Mar. 2022.
7.
H. Ding, J. Qiao, W. Huang and T. Yu, "Cooperative event-triggered fuzzy-neural multivariable control with multitask learning for municipal solid waste incineration process", IEEE Trans. Ind. Informat., vol. 20, no. 1, pp. 765-774, Jan. 2024.
8.
H. Ding, J. Qiao, W. Huang and T. Yu, "Event-triggered online learning fuzzy-neural robust control for FT in municipal solid waste incineration process", IEEE Trans. Automat. Sci. Eng., vol. 21, no. 2, pp. 1201-1213, Apr. 2024.
9.
H. J. He, X. Meng, J. Tang and J. F. Qiao, "Event-triggered-based self-organizing fuzzy neural network control for the municipal solid waste incineration process", Sci. China Technol. Sci., vol. 66, no. 4, pp. 1096-1109, 2023.
10.
H. Han, H. Liu, J. Li and J. Qiao, "Cooperative fuzzy-neural control for wastewater treatment process", IEEE Trans. Ind. Informat., vol. 17, no. 9, pp. 5971-5981, Sep. 2021.
11.
H. Han, Z. Liu, J. Li and J. Qiao, "Design of syncretic fuzzy-neural control for WWTP", IEEE Trans. Fuzzy Syst., vol. 30, no. 8, pp. 2837-2849, Aug. 2022.
12.
J. Wang, W. Luo, J. Liu and L. Wu, "Adaptive type-2 FNN-based dynamic sliding mode control of DC–DC boost converters", IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 4, pp. 2246-2257, Apr. 2021.
13.
T.-L. Le and V.-B. Ngo, "The synchronization of hyperchaotic systems using a novel interval type-2 fuzzy neural network controller", IEEE Access, vol. 10, pp. 105966-105982, 2022.
14.
H. Han, C. Sun, X. Wu, H. Yang and J. Qiao, "Nonsingular gradient descent algorithm for interval type-2 fuzzy neural network", IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 6, pp. 8176-8189, Jun. 2024.
15.
A. Bencherif and F. Chouireb, "A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking", Appl. Intell., vol. 49, no. 11, pp. 3881-3893, Nov. 2019.
16.
T. Jafar, A. A. Suratgar and M. B. Menhaj, "Stable ANFIS2 for nonlinear system identification", Neurocomputing, vol. 182, pp. 235-246, 2016.
17.
J. Tavoosi and F. Mohammadi, "A new type-II fuzzy systems for flexible-joint robot arm control", Proc. 6th Int. Conf. Control Instrum. Automat., pp. 1-4, 2019.
18.
T.-L. Le, N. V. Quynh, N. K. Long and S. K. Hong, "Multilayer interval type-2 fuzzy controller design for quadcopter unmanned aerial vehicles using Jaya algorithm", IEEE Access, vol. 8, pp. 181246-181257, 2020.
19.
T.-L. Le, N. V. Quynh, N. K. Long and S. K. Hong, "Optimum design of function-link type-2 fuzzy asymmetric CMAC based on self-organizing algorithm and modified jaya algorithm", IEEE Access, vol. 8, pp. 202365-202378, 2020.
20.
T.-L. Le, T.-T. Huynh and S. K. Hong, "A modified grey wolf optimizer for optimum parameters of multilayer type-2 asymmetric fuzzy controller", IEEE Access, vol. 8, pp. 121611-121629, 2020.
21.
T.-L. Le, T.-T. Huynh and S.-K. Hong, "Self-organizing interval type-2 fuzzy asymmetric CMAC design to synchronize chaotic satellite systems using a modified grey wolf optimizer", IEEE Access, vol. 8, pp. 53697-53709, 2020.
22.
K. Wang and A. W. Dowling, "Bayesian optimization for chemical products and functional materials", Curr. Opin. Chem. Eng., vol. 36, 2022.
23.
S. D. Blasi, M. Bahrami, E. Engels and A. Gepperth, "Safe contextual Bayesian optimization integrated in industrial control for self-learning machines", J. Intell. Manuf., vol. 35, no. 2, pp. 885-903, 2024.
24.
M. Neumann-Brosig, A. Marco, D. Schwarzmann and S. Trimpe, "Data-efficient autotuning with Bayesian optimization: An industrial control study", IEEE Trans. Control Syst. Technol., vol. 28, no. 3, pp. 730-740, May 2020.
25.
H. Xia et al., "Assessment of PCDD/Fs formation and emission characteristics at a municipal solid waste incinerator for one year", Sci. Total Environ., vol. 883, 2023.
26.
S.-H. Tsai and Y.-W. Chen, "A novel interval type-2 fuzzy system identification method based on the modified fuzzy C-regression model", IEEE Trans. Cybern., vol. 52, no. 9, pp. 9834-9845, Sep. 2022.
27.
B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, "Taking the human out of the loop: A review of Bayesian optimization", Proc. IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016.
28.
W. Yu, "Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms", Inf. Sci., vol. 158, pp. 131-147, 2004.
29.
H. Xia, J. Tang, T. Z. Wang, H. Tian, C. L. Cui and W. Xu, "Interpretable controlled object model of FT for MSWI process based on a Novle linear regression decision tree", Proc. Chin. Control Decis. Conf., pp. 325-330, 2023.
Contact IEEE to Subscribe

References

References is not available for this document.